
Leveraging Graph Representation
Learning for Software Engineering

Masterarbeit
zur Erlangung des Grades eines Master of Science

im Studiengang Web and Data Science

vorgelegt von

Aditya Mehta

Erstgutachter: Prof. Dr. Ralf Lämmel
Institut für Informatik

Zweitgutachter: Johannes Härtel
Institut für Informatik

Koblenz, im August 2022

Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst
wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere
keine im Quellenverzeichnis nicht benannten Internet–Quellen – benutzt habe
und die Arbeit von mir vorher nicht in einem anderen Prüfungsverfahren ein-
gereicht wurde.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-
standen.

✓□ □

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. ✓□ □

. .
(Ort, Datum) (Aditya Mehta)

Aditya
Koblenz, 02.08.2022

Zusammenfassung

Deep-Learning-Techniken (DL) können moderne Software-Engineering-Prozesse (SE)

verändern, um datengesteuerte, selbstlernende und intelligente Softwaresysteme zu

entwickeln. Techniken des Graphenrepräsentationslernens (GRL) helfen bei der Er-

stellung graphenbasierter Darstellungen von Daten (Code) für die automatische Merk-

malsextraktion. Ziel dieser Studie ist es, eine systematische Literaturübersicht zum

Thema "GRL für SE" zu erstellen, die der üblichen empirischen SE-Forschungsmethodik

folgt. Die Studie bietet Einblicke in die Arten von Softwarecode, deren grafische Repräsen-

tationen, DL-Modelle, Vorteile und Herausforderungen bei der Anwendung von GRL

für verschiedene SE-Aufgaben. Darüber hinaus identifiziert diese Studie Arten von

Datensätzen, Sprachen und Bewertungsmetriken, die in Experimenten verwendet wer-

den, und stellt potenzielle Anwendungsfälle für zukünftige Arbeiten vor.

Abstract

Deep learning (DL) techniques can transform modern software engineering (SE) pro-

cesses to make data-driven, self-learning, and intelligent software systems. Graph rep-

resentation learning (GRL) techniques help to create graph-based representations of

data (code) for automated feature extraction. This study aims to conduct a systematic

literature review on the topic "GRL for SE", following standard empirical SE research

methodology. This study provides insights about types of software code, their graph-

ical representations, DL models, benefits, and challenges of adopting GRL for various

SE tasks. Additionally, this study identifies types of datasets, languages and evaluation

metrics used in experiments and presents potential future work use cases.

Acknowledgements

I am grateful to my supervisors Prof. Ralf Lämmel and Mr. Johannes Härtel for sharing

this research opportunity. The discussions with them helped to shape and evolve the

work with feedback at various stages. I am thankful to my deep learner friends Bhu-

pender and Praveen, who helped with technical innovative ideas to conduct research

effectively, and proofreading. On personal note, I am thankful to my family, who is

supportive to let me go abroad and study here. This is a work in service to the Lord

Krishna, and I would dedicate this to my mother, who could not finish her Ph.D. thesis

due to marriage. For a joyful learning journey, I’m thankful to science community as

this work stands on the shoulders of giants.

C

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

1.3 Aim of the Thesis . 2

1.4 Research Questions . 3

1.5 Contributions . 3

1.6 Structure of the thesis . 4

2 Background and Fundamentals 5

2.1 Representation Learning (RL) . 5

2.1.1 Deep Learning (DL) . 6

2.1.2 Graph Representation . 6

2.1.3 Geometric Deep Learning (GDL) . 6

2.1.4 Embedding Techniques . 7

2.1.5 Graph Representation Learning (GRL) 7

2.1.6 Graph Neural Networks . 8

2.1.7 Attention Mechanism . 9

2.1.8 Transformer . 9

2.1.9 Long-range dependency problem and solutions 9

2.1.10 Programming Language Processing (PLP) 10

2.2 Code representations . 10

2.2.1 Representation Types . 11

2.2.2 GRL for SE Framework . 14

2.3 Text Mining . 14

3 Related work 16

i

CONTENTS ii

3.1 Deep Learning and Software Engineering . 16

3.2 Deep Learning on Graphs & Software Engineering 18

4 Methodology 19

4.1 Systematic Literature Review . 19

4.1.1 Planning . 20

4.1.2 Conducting . 23

4.1.3 Reporting . 29

5 Analysis and Results 30

5.1 Systematic Literature Review . 30

5.1.1 Publication trends . 30

5.1.2 Research Question 1 . 33

5.1.3 Research Question 2 . 37

5.1.4 Research Question 3 . 41

5.1.5 Research Question 4 . 43

5.2 Discussion . 46

5.2.1 Combined Taxonomy of GRL4SE field 46

5.2.2 Evaluation: Graph-based and traditional approaches 48

5.2.3 Adversarial attacks . 50

5.2.4 Challenges and implications . 50

6 Conclusion 52

6.1 Conclusion . 52

6.2 Threats to validity . 53

6.3 Summary . 54

6.4 Future work . 54

A Appendix 55

A.1 ACM Search Query String . 55

A.2 IEEE Xplore Search Query String . 55

A.3 ArXiv Search Query String . 56

A.4 Software Tools . 57

A.5 Selected Research Studies for SLR . 58

A.6 Journals and conferences names of studies 59

List of Figures

2.1 Overview: Feature Extraction . 5

2.2 Overview: GRL in Machine Learning Ecosystem 8

2.3 Example Code Representation: Abstract Syntax Trees 12

2.4 Example Code Representation: Graphical Abstract Syntax Tree 12

2.5 Example Code Representation: Control Flow Graph 13

2.6 Framework: GRL for SE . 14

4.1 Analysis: TF-IDF values from relevant documents 26

4.2 Analysis: TF-IDF values from irrelevant documents 26

4.3 Analysis: Identification of relevant terms . 27

4.4 Workflow: Systematic Literature Review . 29

5.1 Analysis: Publications distribution over years 31

5.2 Analysis: Publication venue for studies . 32

5.3 Analysis: Citations count for studies as per publication venue 33

5.4 Analysis: Code Types . 34

5.5 Analysis: Code Representation Types . 35

5.6 Analysis: SE task types . 39

5.7 Analysis: (Machine) Learning types . 41

5.8 Analysis: Number of experiments for dataset types 44

5.9 Analysis: Dataset Languages . 45

5.10 Analysis: Evaluation Metrics . 46

5.11 Taxonomy: GRL for SE (Zoom-in for the best view) 47

iii

List of Tables

4.1 Overview: Quality Assessment Criteria . 21

4.2 Overview: Data Extraction Form . 22

4.3 Overview: Academic Search Types . 23

5.1 Taxonomy: Code Representation Types . 36

5.2 Taxonomy: SE Tasks . 39

5.3 Taxonomy: Neural network model families 42

5.4 Summary: Evaluation Metrics . 45

A.1 Software tools used in this study . 57

A.2 Selected research studies for SLR . 58

A.3 Journals and Conferences Names . 59

iv

Chapter 1

Introduction

1.1 Motivation

Modern engineering systems are increasingly adopting deep learning (DL) techniques,

with the geometry of the underlying data becoming increasingly important in the DL

field. Geometric deep learning (GDL) is a heavily-researched area with data represen-

tations which go beyond Euclidean space [1]. The basic premise is that elements of any

system are connected in a network structure. This premise helps to approach prob-

lems, which are sub-optimally solved using traditional approaches [2]. For instance,

the GDL has contributed to understanding structure-based protein unfolding [3], us-

ing the graph neural networks (GNN) in unprecedented fast drug discovery for SARS-

CoV-2 (Covid-19) disease [4].

Adoption of DL techniques in SE is leading a paradigm shift toward intelligent software

systems. This approach handles fuzzy information, coding conventions, and grammar

of languages without relying on manual heuristics as involved in traditional analysis

[5]. Code repositories contain a large amount of software artifacts data (code), which

can help machines learn automatically to reason about the code [6]. DL offers transfor-

mation methods for SE due to reasons including (i) scale of analyzable software data,

(ii) automated feature engineering, (iii) transfer learning capabilities of DL to SE use

cases, and (iv) robustness and scalability. These factors indicate a high potential for DL

to improve the traditional SE process [7].

1

1.2. PROBLEM DESCRIPTION 2

However, how can various SE tasks leverage GDL effectively, remains still not ade-

quately addressed. In the interplay between DL and SE fields, this study focuses on

the theme "deep learning for software engineering" (DL4SE): the use of deep learning

techniques across various SE use cases. This study attempts to answer the question: is

it possible to treat software as "data" for deep neural networks? Based on the insights

from this literature survey, we posit the answer as a confident "yes". In other words, we

present neural software analysis as an approach to treat program analysis to learn to

reason about software code [5].

1.2 Problem Description

The advent of deep learning led to a paradigm shift from user-defined, heuristics-based

feature extraction to automatic feature learning [8]. The set of techniques to imple-

ment automated feature learning based on the underlying code treated as graphs is

known as graph representation learning (GRL). Software code analysis has been ini-

tially approached using manual, heuristics-based methods and later by using natural

language processing (NLP) techniques representing code as a sequence of text tokens

[6], or as parse trees [9]. Code can be represented as a graph with nodes as elements of

the program while edges illustrate relationships among them [10]. Graph representa-

tion can help capture syntactic and semantic attributes, which could also reduce large

training cycles [10], and capture the dependency structure of the flow in a program

[11]. Deep learning frameworks can learn to reason on code with graph representation

as input for various downstream SE tasks, such as code classification, summarization,

vulnerability detection, and duplicate detection [11]. Automated programming sys-

tems offer services from simple use cases such as syntax and code style checking to

advanced complex use cases such as proposing names of variables, methods, and even

code generation [12].

1.3 Aim of the Thesis

This thesis aims to identify, collect, and analyze the code represented as graph-based

formats and their corresponding applications in the SE domain using DL techniques

[13]. We follow the empirical systematic literature review (SLR) methodology to con-

duct this study.

1.4. RESEARCH QUESTIONS 3

1.4 Research Questions

1. Which types of graph-based representations of code are used in empirical re-

search?

2. Which SE tasks leverage graph representation learning?

Rationale:

• To determine applications of GRL in SE

3. Which types of learning types, models and techniques of GRL are widely used?

Rationale:

• To identify the role of GRL, benefits and implications

• To determine non-GRL or traditional methods being outperformed

4. Which datasets, languages, and evaluation metrics do experiments use?

Rationale:

• To summarize available datasets, programming languages, and evaluation

metrics used in GRL4SE applications

1.5 Contributions

DL techniques have proven to be effective in a variety of applications. Since a wide

range of data representations, architectures, models, and techniques are available, se-

lecting the most appropriate configuration for any specific SE task remains a challenge

[14]. For instance, for the SE task program classification, what is the suitable graph-

based representation, model, technique, and evaluation metric?

This thesis work helps the research community by offering a comprehensive overview

of the graph-based deep learning approaches for SE. As per the best of the authors’

knowledge, existing surveys are limited to the topic of DL for SE or similar domains

but are not focused on graph-based DL. This work is the first to conduct a systematic

literature review (SLR) on GRL for SE. Specifically, our work provides information en-

abling the reader with underlying theoretical concepts and practical implementation

techniques to apply GRL to various SE tasks.

1.6. STRUCTURE OF THE THESIS 4

1.6 Structure of the thesis

Chapter 2 provides supporting material to enable the reader to understand the funda-

mental concepts and terminologies.

Chapter 3 provides existing research literature and empirical studies, which try to an-

swer the research questions in related settings.

Chapter 4 gives insights into the research approach, specifically for conducting the sys-

tematic literature review.

Chapter 5 provides a detailed analysis of various studies attempting to find answers to

proposed research questions.

Chapter 6 discusses the overall concluding remarks, limitations and threats to validity.

This chapter also provides potential future work possibilities.

Chapter 2

Background and Fundamentals

2.1 Representation Learning (RL)

Underlying data representation or features heavily determine the performance of DL

algorithms [15]. Traditional ML techniques depended on expert human intervention

for manually extracting features, and hence unable to be fed with raw data to learn rep-

resentations [16]. Representation learning enables a machine to process the raw data

to learn and discover data representations automatically, i.e. implementing automatic

feature extraction and learning [16].

Figure 2.1 Overview: Feature Extraction

5

2.1. REPRESENTATION LEARNING (RL) 6

2.1.1 Deep Learning (DL)

Deep learning methods are a specific group of techniques in representation learning,

with the notion of "deep" implying a large number of intermediate processing layers

[15]. DL systems use various transformations on data with a set of learnable param-

eters to learn to reason from data. The transformations are based on mathematical,

linear and non-linear computation methods, with increasingly complex levels of ab-

stractions to create representations of data usable for DL algorithms [15], [16]. DL helps

to create computational systems to learn data representations in multi-layered or hi-

erarchical levels of abstraction [16]. Such systems can be "trained" for specific tasks

by updating the parameters based on model performance on a labelled dataset. The

key idea is to use many examples to train the model to make predictions about unseen

data [7].

2.1.2 Graph Representation

Traditional Euclidean data formats cannot capture underlying geometric information

in data for many real-world objects [1]. A graph representation helps to store the rela-

tional knowledge of interacting entities and make predictions by efficiently accessing

the stored knowledge [17].

Graphs have the characteristics of permutation invariance or equivariance [18]. Invari-

ance is a property of function not dependent on the arbitrary ordering of the elements

in adjacency matrix [18]. Equivariance property means that the function output fol-

lows and changes per permutations in the adjacency matrix. This property is suitable

for code-as-graph representations since multiple syntactic variations of written code

can implement the same programming logic.

2.1.3 Geometric Deep Learning (GDL)

Deep learning models have been proven successful with Euclidean data types, such as

speech, image and video. Recently, the trend of applying this to non-Euclidean data is

on a rise [2]. Geometric deep learning is a set of techniques trying to generalize and

extend the deep neural models to non-Euclidean domains, such as graphs and mani-

folds (arising from very different fields of mathematics as graph theory and differential

geometry, respectively) [1].

2.1. REPRESENTATION LEARNING (RL) 7

One query that may arise here is why we need to extend DL on graphs. The answer lies

in the limitations of traditional models not being able to understand the information in

complex structures such as graphs, which contain two types of information for under-

lying nodes and edges, i.e. relationships among nodes. Naive neural networks such as

Multi-Layer Perceptron (MLP) fail on the graph, so it becomes necessary to build novel

neural network architectures to process graphs [19].

2.1.4 Embedding Techniques

Embedding techniques convert the raw data into a high-dimensional vector, along

with preserving underlying properties of data representation [17]. Based on a trade-

off between the benefits and limitations of various embedding techniques, the choice

depends heavily on the suitability and needs of the target SE task. Some empirically

popular techniques in DL4SE are Kernel methods, DeepWalk, Node2Vec [17], [20].

2.1.5 Graph Representation Learning (GRL)

Graph representation learning (GRL) is the group of techniques learning to extract fea-

tures automatically by understanding the underlying data. DL models can use such

learned graph representation to perform downstream tasks effectively [17]. Figure 2.2

shows the graph representation learning in ML ecosystem.

2.1. REPRESENTATION LEARNING (RL) 8

Machine Learning

Deep Learning
(Artificial Neural Networks)

Euclidean Data

1. Natural Language Processing
2. Computer Vision

3. Speech

Non-Euclidean Data
(Geometric Deep Learning)

Graph Representation Learning

Figure 2.2 Overview: GRL in Machine Learning Ecosystem

2.1.6 Graph Neural Networks

A graph neural network (GNN) learns an embedding representation for all nodes, with

information about its neighbourhood, to learn the embedding of a whole graph [21],

[22]. Most existing GNN models follow the message passing neural networks (MPNN)

framework, with nodes exchanging information to learn in neural network architec-

tures with the process collectively called message passing and neighbourhood aggre-

gation [19]. Aggregation function can be simple as sum, average or complex, e.g. based

on attention mechanism [23], [24]. A gated graph neural network (GGNN) is a GNN

with information transfer between nodes through a gated recurrent unit (GRU) mech-

anism to effectively capture dependencies of different time scales [10].

A recent survey organizes GNNs into four groups [25], [26]:

1. Recurrent Graph Neural Networks (RecGNNs)

2. Convolutional Graph Neural Networks (ConvGNNs)

3. Graph Autoencoders (GAEs)

4. Spatial-temporal Graph Neural Networks (STGNNs)

2.1. REPRESENTATION LEARNING (RL) 9

2.1.7 Attention Mechanism

Introduced by [27], the attention mechanism captures relevant parts of the input with

more importance than others to create a better representation suitable to the target

task [28], [29]. Natural language processing (NLP) techniques use this for text data rep-

resentation, while computer vision (CV) methods use it for image data representation

[28]. GRL field extends this concept to generate embedding to learn better graphical

representations of data [29].

2.1.8 Transformer

A transformer is a model architecture, dependent on the attention mechanism, used

to identify global dependencies between input and output in sequence-to-sequence

tasks. It does not depend on recurrence, as was previously used in recurrent neural

network (RNN), and allows significant parallelization [27]. This model extracts features

of each element to determine the importance of other elements with respect to that

particular element. Such architectures have helped solve numerous challenging tasks

in NLP and CV effectively and efficiently, and the GRL field has increasingly adopted

them in recent years.

2.1.9 Long-range dependency problem and solutions

The vanishing gradient (approaching zero value) in DNNs leads to a long-range de-

pendency problem, due to which DNNs face issues capturing dependency in data over

a long-range distance. Long short-term memory (LSTM) processes single data points

or their entire sequences based on feedback connections and hence helps to solve the

problem. Cells remember values at arbitrary time intervals, while gates control the

flow of information incoming or outgoing from cells. The Gated recurrent unit (GRU)

approach uses a gated mechanism to capture dependencies from different time scales

effectively. Recurrent neural networks (RNNs) with LSTM or GRU are de facto stan-

dards to model sequential data. Traditional approaches to treating code as text faced

challenges from the limitations of RNNs. As they are designed to process sequences

smoothly and are not suitable to capture the control and data flow, the graph should

be a better representation [30].

2.2. CODE REPRESENTATIONS 10

2.1.10 Programming Language Processing (PLP)

The program representation problem, i.e. how to convert code into suitable represen-

tation, is essential to exploit the benefits of deep learning [31]. Programming language

processing (PLP) is the set of techniques which process the code input from program-

ming languages and analyze it to learn various downstream SE tasks [32].

2.2 Code representations

Code representation captures syntactic, semantic, control and flow information in the

code. Approaches can be categorized as sequence-, tree-, and graph-based [31], [33].

Sequence-based

Initially, the code was considered similar to a natural language due to inherent natu-

ralness in programming languages, and NLP techniques were applied [6]. A sequence-

based representation such as a natural code sequence (NCS) captures the sequential

order to connect neighbouring tokens to preserve the logic [21]. However, various

problems arise with treating code as natural language [34]. The syntactic structure

differs from natural languages because of strict syntactical limitations, use of delim-

iters and long-distance references [34]. Source code usually works with an open, ever-

expanding vocabulary, and treating code as NL implies out-of-vocabulary problems

occurring too often [34]. In sum, sequence-based approaches treat code only as a se-

quence of tokens and are limited to capturing only syntactic structures, leading to the

need to develop novel techniques [30], [33], [35].

Tree-based

Tree-based approaches represent the code to capture structural and content informa-

tion [33], [36]. Abstract syntax tree (AST) can be defined as a representation of the

grammatical structure of code, using tree form with nodes illustrating the structure

[37].

Graph-based

Tree-based representation cannot capture relationships such as control flow and data

flow. Graph-based approaches augment ASTs with additional edges to capture such

flow information in the code, enabling it to capture syntactic as well as semantic infor-

mation comprehensively [12], [33]. Graph-based representation possesses good gen-

2.2. CODE REPRESENTATIONS 11

eralization ability, however, requires a larger dataset for training [33], [36]. Extending

code to a non-Euclidean space, [10] first represented code as a graph. Based on the no-

tion of code as a graph, [38] developed path-based representation using abstract syntax

trees.

2.2.1 Representation Types

Here, we explain a few essential graph-based representation types of code:

Abstract Syntax Tree (AST)

AST is an ordered tree representation of the context-free grammar structure of the

code, which can capture lexical (such as tokens) and syntactic information of code [37],

[39]. Usually, it is the first step used by a parser to check syntax errors in the structure

of the program [21].

AST has been historically used to analyze and optimize compilers. However, they can

be too dense for large programs. Such high density can mislead the model to memorize

the syntax instead of it becoming able to learn the associated semantics [40]. AST starts

from the root node, the downstream tree contains nodes showing language constructs

such as functions, blocks, statements, declarations, and expressions, and finally up to

the leaf nodes such as variable names (primary tokens) [21], [34].

For instance, the Python source code to calculate the smaller absolute value between

two arguments is shown here.

1 def smaller_absolute_value (a , b) :

2 i f abs (a) < abs (b) :

3 return a

4 else :

5 return b

Its corresponding AST is shown in Figure 2.3a, and simplified AST in 2.3b, generated

using module AST1, and the library rich2 respectively. Various tree elements are illus-

trated in different colours to differentiate primary tokens, statements, and conditions

in the program code.

1https://docs.python.org/3/library/ast.html
2https://pypi.org/project/rich/

2.2. CODE REPRESENTATIONS 12

(a) Abstract Syntax Tree

(b) Simplified AST

Figure 2.3 Example Code Representation: Abstract Syntax Trees

AST can be converted into graph-based representation so that it can be fed as an input

to DL models to process downstream tasks. The same code’s AST is shown in graph-

based format in Figure 2.4, generated using the library VAST3. The depth or density of

graph-based AST is less than that in tree-based AST structures.

Figure 2.4 Example Code Representation: Graphical Abstract Syntax Tree

3https://pypi.org/project/VisAST/

2.2. CODE REPRESENTATIONS 13

Control Flow Graph (CFG)

A control flow graph is a directed graph representing the flow of control, i.e. various

paths traversed by the program during execution based on conditional statements [21],

[22]. Statements are nodes and conditions are connected by edges to show the path for

the control flow. Traditionally, the static analysis used CFG due to its ability to cap-

ture the flow within a program accurately [22]. The reachability analysis identifies loop

structures and locates inaccessible parts of code in the programs [22].

The CFG for example code snippet has been shown in Figure 2.5. The left block shows

the function definition block, and the centre block shows the control flow in the code.

For instance, the "if construct" calls the "abs" module to calculate the absolute value of

the variable. At the end of the program execution, variable "a" or "b" is returned based

on value comparison. The right block shows various possible keys(symbols), and basic

colour-coded elements of the code. This CFG is generated using library py2cfg4.

smaller_absolute_value KEY

def smaller_absolute_value(a, b):... if abs(a) < abs(b):

abs

calls

abs

calls

return a

abs(a) < abs(b)

return b

(abs(a) >= abs(b))

input

calldefault

iffor

return

whiletry

raise

Figure 2.5 Example Code Representation: Control Flow Graph

Data Flow Graph (DFG)

A data flow graph (DFG) keeps track of variables used in a CFG [21]. Each node is usu-

ally an element such as a variable or operator, whereas an edge shows the data trans-

fer between two entities. Data flow implies accessing or updating certain variables in

program execution. DFG can be used to understand the logic and functionality of a

program, suitable for debugging tasks [41], [42].

Miscellaneous representations

Based on the intended purpose to capture syntactic, semantic, control, data flow and

dependency information, previously discussed base representations can derive other

4https://pypi.org/project/py2cfg/

2.3. TEXT MINING 14

complex ones. Conditional random field (CRF) is a probabilistic (log-linear) model for

the conditional probability of labels y when observation x is given [43]. CRFs can be

used to model relations among variables, AST elements and types without considering

the data flow [10]. This representation was used by [43] to predict variable names and

types.

A function call graph (FCG) models the semantic information associated with func-

tions in code. Each node shows a function with an edge showing the call relation be-

tween functions [41], [42]. A program dependency graph (PDG) is a combination of

AST and CFG [22]. A code property graph (CPG) is created by augmenting AST with

additional edges to capture control-flow, data-flow and dependency information [37],

used as a combination of AST, CFG and PDG [44].

2.2.2 GRL for SE Framework

GRL for SE can be described in the framework as shown in Figure 2.6. The code is first

converted to a graph representation and then to a vector format so that a DL model

can process this input to learn various downstream tasks, ranging from classification

to prediction and generation in code-related contexts.

Figure 2.6 Framework: GRL for SE

2.3 Text Mining

As part of information retrieval techniques, text mining is an algorithmic approach to

extracting the required information from a collection of text documents (often known

as corpus) [45]. For instance, this can help to discover underlying relationships among

different terms in the text corpus to find the highest important, also known as weighted

terms [46]. One common technique is to extract relevant terms from a text document,

using frequencies to give a ’relevance value’ to terms. This technique could be extended

to a text corpus to calculate the term’s relevance in all documents [47].

Term Frequency

2.3. TEXT MINING 15

Term frequency tf(t, d) is the frequency value of the term t within document d,

counted as raw count, relative or also as logarithmically scaled values [45].

Inverse Document Frequency

Inverse document frequency idf(t) represents the amount of information carried by

the word, based on checking if the word is common or rare in all documents. It is

calculated as a logarithmically scaled inverse fraction of the documents containing a

term.

i d f (t ,d) = log (N
nt

)

N is total number of documents in the corpus, while nt is the number of documents

where the term t appears (i.e. cannot be zero). To avoid divide by zero conditions for

terms absent in corpus, it is common practice to smooth the denominator by adding

1, i.e. (1+nt).

TF–IDF (Term Frequency – Inverse Document Frequency)

TF – IDF tfidf(t, d) is a statistical approach involving frequency of a term in a

document, and number of documents in corpus with same term present [45], [47].

TF-IDF value is simply multiplication of tf(t, d) and idf(t) as shown in equation 2.1:

t f i d f (t ,d) = t f (t ,d)∗ i d f (t) (2.1)

where tf(t, d) is the frequency of term t in document d, and idf(t) is number of

documents containing the term t, with logarithmically scaled values as inverse

fraction of total number of documents in corpus.

Terms in large text documents may have a significantly higher frequency value than

that of smaller text documents. It results in a high TF-IDF value without necessarily

indicating a higher relevance, hence a normalization is recommended [47]. With

normalization, the formula becomes

t f i d f (t ,d) = (
t f (t ,d)

t f max(d)
)∗ i d f (t) (2.2)

In the equation 2.2, tfmax(d) is the frequency of the most-frequent term in document

d.

Chapter 3

Related work

3.1 Deep Learning and Software Engineering

A large amount of software data is available in the repositories, and DL techniques can

use to learn to assist in SE tasks. This research area is defined as "Big Code" [6], which

extends to other data such as requirements and issue trackers. The interaction

between the DL and SE fields emerges into two themes. The first theme is DL

techniques viewed as a new form of software development, usually defined as

software engineering for deep learning (SE4DL) [7]. It represents opportunities to

automatically learn the program from large datasets instead of specifying it explicitly

by humans. Another theme is to leverage DL techniques to help existing software

engineering tasks, defined as deep learning for software engineering (DL4SE) [7]. Both

fields offer exciting research opportunities as well as technical challenges. [6]

proposed the naturalness of a programming language, which led to techniques

treating programming language similar to a natural language to apply NLP

techniques.

On the one hand, there has been a lack of research in the SE4DL field. Specifically, [48]

conducted a case study based on seven industry projects to identify tools, best

practices, and challenges for DL systems using SE processes. [7] presented a

workshop paper and discussed research opportunities and diverse applications of

SE4DL and DL4SE fields.

16

3.1. DEEP LEARNING AND SOFTWARE ENGINEERING 17

On the other hand, the DL4SE field contains a large number of research papers, and

we will discuss their strengths and weaknesses next. A few papers discussed research

trends in specific focus areas. For instance, [49] conducted a SLR and discussed the

lifecycle of federated learning systems from a SE perspective. [50] conducted a SLR to

determine 8 ML techniques for ML-based software development effort estimation

(SDEE).

Studies without systematic literature review

[7], [51]–[53] presented technical briefings, workshops or tutorial papers where they

discussed approaches to adopt DL for SE. [54] researched the changes in software

development practices due to ML. They surveyed 14 in-person interviewees, and 342

online respondents and described aspects of SE tasks and knowledge work

characteristics. [55], [56] conducted a bibliography analysis and described industry

contribution and practicability of DL as a hindering problem in its adoption. [14], [57]

conducted a mapping study and identified ML environment for specific SE tasks, with

[14] using software engineering body of knowledge (SWEBOK) knowledge areas [58].

Studies with non-SLR style literature review

[6], [59] conducted a literature review describing the naturalness of code. [60]

provides insights about recent advances of DL in SE. [61] discussed replicability and

reproducibility of DL as issues while using DL in SE. [13] explored the relationship

between ML tools and SDLC stages. [5] describes three dimensions: the amount of

learnable data, the fuzziness of available information, and well-defined correctness

criteria to help in decision making: whether to use neural software analysis. [62]

explained pre-trained models of source code (CodePTM) and its impact on adopting

DL for SE. However, these papers did not conduct a systematic literature review and

did not often provide information about the process of paper collection and

documentation about analysis approaches.

Studies with systematic literature review

Now, we discuss SLR studies in the DL4SE with a similar focus as our work, however,

have distinctive additional findings. [63] identified challenges of dataset features,

resources, and network configuration. [64] uses SWEBOK to map DL applications in

SE to its 12 knowledge areas. [65] discussed additional optimization algorithms and

3.2. DEEP LEARNING ON GRAPHS & SOFTWARE ENGINEERING 18

overfitting tackling techniques, and [66] conducted SLR based on the components of

learning and created concept maps. They identified 23 SE tasks and explored data

types, pre-processing techniques, overfitting and underfitting for SE tasks, impact

measured, and non-reproducibility factors. [67] is the most comprehensive SLR,

consisting of analysis from 1428 papers. They described the complexity of using

DL4SE, specifically highlighting differences between ML and DL techniques across 77

SE tasks. They enable the community to measure the changes in SE due to ML/DL,

improvements and well-informative discussion on whether to select DL/ML for a SE

task.

3.2 Deep Learning on Graphs & Software

Engineering

All previously discussed studies were at the intersection of ML/DL and SE. Our work

focuses on GRL in the SE context. As GRL is a new research area, this has been not

studied well enough in the SE context. The closest works to our work (considering the

main research context, focused on GRL) are [68], [69] however, they discussed DL on

graphs in the NLP field and also not focused on the SE applications. Another work [70]

is closest to our work in its design and main research context. They explored GRL in

bio-informatics, discussing various trends, methods and applications. To the best of

our knowledge, this is the first study focused on the GRL field and its applications,

especially in the SE context.

Chapter 4

Methodology

4.1 Systematic Literature Review

Evidence-based research review has gained traction in recent decades, which was

later adapted to SE [71], known as the practice of evidence-based software

engineering (EBSE). EBSE closes the gap between research and practice, and follows a

process based on a specific set of research questions [71].

On the one hand, a traditional review contains approaches to survey existing research,

but the process is not well-documented and hard to reproduce and has a limited

objective assessment [72]. On the other hand, a Scientific Literature Review (SLR)

follows a well-defined set of procedures and protocols to collect, evaluate and

interpret all relevant records in an unbiased manner [71]. SLR serves to find

evidence-based answers to a specific set of research questions, along with recording

the process in a detailed fashion, hence is reproducible [71].

Also, such a review helps to identify gaps in research areas, and further research as a

future work [72]. The relevant articles are considered primary studies, and the review

itself is a secondary study. Among a set of different guidelines, the most authoritative

and practised in literature is the guideline by Kitchenham [72]. Activities in the review

are organized into three major phases: planning, conducting and reporting [73]. The

activities are sequential but often contain iterations with the possibility to adapt and

refine the approach.

19

4.1. SYSTEMATIC LITERATURE REVIEW 20

4.1.1 Planning

GRL has been a heavily researched area in recent years [8]. The need for the SLR arises

because we would like to identify possibilities of exploiting and extending the benefits

of GRL to the SE domain. Also, it would help us identify existing research gaps, and

summarize existing literature, to produce evidence objectively and scientifically.

A well-documented protocol should be defined, which contains details such as

background, research questions, search strategy, selection criteria, relevant

methodology, quality assessment, data extraction approach, evidence synthesis and

dissemination for the review [72]. This protocol can also help to reduce the researcher

bias [73].

4.1.1.1 Study Selection

Study selection is a process of selecting the papers, i.e. primary studies for data

extraction and further analysis. The SE field often contains poor-quality abstracts, so

the conclusion should be reviewed in combination with abstract [73]. The selection

procedure consists of multiple phases: the first phase contains reviewing based on

reading the title, abstract, and conclusion [74], [73]. The next phase is implemented

based on the inclusion and exclusion criteria as per the research context [72],

mentioned below:

Inclusion Criteria

✓ Study published in the last 10 years, i.e. 2012-2022

✓ Study contains code representation in graph-based format

✓ Qualitative or quantitative empirical research about GRL in SE

Exclusion Criteria

× Study not answering at least one research question with empirical evidence

× Study focused on graph theory/ML/DL, however not in GRL for SE context

× Study not from conferences or journals, such as Ph.D. dissertations, tutorials,

and magazines

4.1. SYSTEMATIC LITERATURE REVIEW 21

× Study length less than or equal to 2 pages

× Study not available in full-text format

× Study not in English language

4.1.1.2 Quality Assessment

The next phase of study selection relies on a set of specific quality assessment

questions with defining a measurement scale to assess the overall quality of primary

studies [72]. We assign a value such as 1 (Yes), 0 (No), and 0.5 (Partially) based on the

study’s ability to answer a particular question. Aggregated scores for all questions are

compared with a threshold score of 4 (out of 5) to consider for further analysis. A

summary of different questions covering aspects of quality is in the below table 4.1.

ID Question Answers

Design

QA1 Are the study aim and contribution clearly described? Yes/No/Partially

Conduct

QA2 Does the study describe inputs, outputs and methodology in detail? Yes/No/Partially

QA3 Does the study describe approach for preparation of dataset? Yes/No/Partially

Data Synthesis

QA4 Are the approach of analysis and evaluation well-described? Yes/No/Partially

Credibility

QA5 Is the study sufficiently referenced? Yes/No/Partially

Table 4.1 Overview: Quality Assessment Criteria

4.1.1.3 Data Extraction

The data extraction form should be created while defining the study protocol [72].

This step is required to collect information to aggregate and synthesize the evidence

to answer research questions. Information such as title, authors, publication details,

study type and elements about research questions are considered [72]. Data

extraction form for this study have been summarized in below table 4.2.

4.1. SYSTEMATIC LITERATURE REVIEW 22

Data Item Information to capture RQ

ID Identifier of the research study in SLR

Title Title of the study

Authors Authors of the study

Year Year of the study

Publication Venue & Name Journal or conference name

Citations Number of citations of the study

Main Contributions & Summary Main contributions summary of the study

Code Type Assembly/binary/compiler/source code RQ1

Representation Type code-as-graph representation type RQ1

Representation Characteristics Attributes of representation RQ1

Embedding Type & Level Type and level of graph embedding RQ1

Software Engineering Task SE task type and details RQ2

Extensibility Language/framework-specific or agnostic RQ2

Platform Support Supported platforms RQ2

Learning Type Machine Learning type (Supervised/Unsupervised/Semi-Supervised) RQ3

Traditional Methods Traditional methods for the SE task RQ3

Role of GRL Role of the GRL in the SE task RQ3

Neural Network Type/Model Type and characteristics of the neural network RQ3

Dataset Type Type of dataset and names RQ4

Programming Language Target programming language of the experiment RQ4

Evaluation Metrics Metrics for evaluation of the results RQ4

Research Gaps/Future Work Current gaps in research, and possible future work RQ4

Table 4.2 Overview: Data Extraction Form

4.1.1.4 Data Synthesis

We collect and summarize the results in this step to create a descriptive synthesis

based on qualitative data. The extracted data is next analyzed to demonstrate the

homogeneity or heterogeneity of results [72].

4.1. SYSTEMATIC LITERATURE REVIEW 23

4.1.2 Conducting

4.1.2.1 Search Strategy

In an academic research ecosystem, the search types, goals, and their corresponding

heuristics could be summarized [75] as shown in below table 4.3:

Search Type Goals Dominant Heuristics

Lookup
To identify research articles to fulfill

information gaps with quick targeted search

* Straightforward search, navigation

* Most specific first

Exploratory To learn about a body of research, with goals becoming clearer iteratively.

* Wayfinding (with little prior knowledge)

* Most specific first

* Snowballing/pearl growing (association)

* Post-query filtering (limit as per meta-info)

Systematic
To identify all research artifacts with

transparent and reproducible search

* Snowballing/pearl growing (association)

* Post-query filtering (limit as per meta-info)

* Building blocks (with Boolean operators)

* Handsearching (manual screening)

* Successive fraction (as per exclusion list)

Table 4.3 Overview: Academic Search Types

In our study, we first employ heuristics of post-query filtering and building blocks

while implementing TF-IDF to improve the query string. Once we collect research

articles, we use the heuristic of hand-searching for manual screening, with successive

fraction heuristic to eliminate artefacts following the selection criteria.

4.1.2.2 Bibliographic Search Systems

Based on a comprehensive study by [76], academic search systems could be classified

broadly into two groups: principal and supplementary sources. Few principal systems

are ACM Digital Library, ScienceDirect, and Scopus, whereas arXiv, DBLP, Google

Scholar, and IEEE Xplore are supplementary system [76], [73].

For evidence synthesis in systematic reviews and meta-analysis, available search

systems cannot directly be used [76]. It is advisable to use multiple databases because

electronic databases and digital libraries cannot fulfil the requirements to identify

relevant articles for a review due to the lack of standardized keywords [74], [73], [72].

Based on criteria such as coverage, the relevance of results and their results export

features, we choose ACM digital library as our principal search system, along with

IEEE Xplore and ArXiv as supplementary systems. Also, we consider using the pioneer

4.1. SYSTEMATIC LITERATURE REVIEW 24

repository "machine learning for big code and naturalness" (ML4Code)1 as another

secondary system to identify relevant articles.

4.1.2.3 Query String for Extraction

Guidelines

Instead of performing a search directly in the database, a log document must record

the complete search process. It helps to register the different steps, make it

reproducible and accountable, and allows the searcher to control the whole process

[77].

The PICO (Population, Intervention, Comparison and Outcomes) framework can be

used to determine keywords and derive underlying concepts from research questions

[72]. Key concepts, Boolean operators, thesaurus terms, and various synonyms and

variations help to formulate the query phrase as part of single line search strategy [77].

Pilot Search

Initially, it is advised to conduct a broad search, and later make it more sensitive, and

check if new relevant articles are found by comparing the results [77]. After extracting

key concepts and elements from the research questions, we create a search query,

used to conduct a pilot search on the principal system (ACM digital library). The

purpose is to determine the patterns of information and knowledge representation in

relevant papers.

Pilot Search Query String

(Source OR Code OR Software OR Module OR Program*

OR Syntax OR Semantic OR Langu* OR Represent*)

AND (Graph OR Tree)

AND (Neural OR Network OR Machine OR Deep

OR Learn* OR data* OR Engine*)

We obtain 306 search results on ACM database as on February 25, 2022 .

1https://ml4code.github.io/papers.html

4.1. SYSTEMATIC LITERATURE REVIEW 25

4.1.2.4 Improvement of Query String

We implement the TF-IDF technique to identify the relevant terms for improving the

search results. The algorithm calculates the frequency of different terms in all

documents. The prerequisite step involves extracting text documents in a format

which supports text mining techniques to read from them. We pre-process the full

text of documents by extracting only alphabetical letters and discarding other

characters, converting everything to lower case, and splitting the sentences into a list

of words. We also remove stop words (e.g. ’is’, ’the’) from text with a list of words

pulled from a standard SPACY library 2. We perform data processing in Python using

the TfidfVectorizer method of the Scikit-Learn library 3.

Based on screening by reading the title and abstract of results, a number of

documents (with a threshold heuristic: in our study as ten) are marked as relevant and

similarly other ten documents are noted as irrelevant. The weighing technique is

applied to calculate a global TF-IDF value for each term from all documents in the

text corpus [47].

The steps of the algorithm are as below [47], [78]:

1. Mark a number of documents(for instance, 10 as threshold) as relevant, i.e.

group R.

2. Mark a number of documents (10) as irrelevant, i.e. group IR.

3. Get TF-IDF values for the terms in studies marked as relevant (R), calculated by

summing TF-IDF values, i.e.
∑

di ϵR t f i d f (t ,di) where di is a document in R,

having term t.

A overview of TF-IDF values from relevant documents is shown below in Figure

4.1, with color intensity mapped to the magnitude of value.

2https://spacy.io/
3https://scikit-learn.org/stable

4.1. SYSTEMATIC LITERATURE REVIEW 26

Figure 4.1 Analysis: TF-IDF values from relevant documents

4. Get TF-IDF values for the terms in studies marked as irrelevant IR, calculated

by summing TF-IDF values, i.e.
∑

d j ϵI R t f i d f (t ,d j) where d j is a document in

IR, having term t.

A overview of TF-IDF values from irrelevant documents is as shown below in

Figure 4.2.

Figure 4.2 Analysis: TF-IDF values from irrelevant documents

4.1. SYSTEMATIC LITERATURE REVIEW 27

5. Calculate the global TF-IDF by subtracting the IR values from R values, dividing

the resultant by number of documents in R, i.e. cardinal value of group R.

t f i d f (t ,D) =
∑

di ϵR t f i d f (t ,di)−∑
d j ϵI R t f i d f (t ,d j)

|R| (4.1)

6. The outcome is a list of global TF-IDF values, which provides the top key terms

after sorting (in our study top 10 key terms). These terms are recommended by

the method for improving search results by modifying the query string. The key

terms have been shown in the Figure 4.3.

Figure 4.3 Analysis: Identification of relevant terms

7. The relevant terms are included in final search string, while irrelevant terms are

removed.

4.1.2.5 Final Query String

Based on the result of the TF-IDF technique, we identify the most important terms to

update the query string. Sometimes due to variation in terminologies used by

4.1. SYSTEMATIC LITERATURE REVIEW 28

different databases and limitations of the search query string, few relevant papers

could be missing [79]. To mitigate this, we use the database guides4 to extract relevant

information seamlessly and accurately. We identify related terms and synonyms by

following the IEEE thesaurus5, which is a vocabulary of scientific terms. Also, we add

abbreviations such as "NN" for "neural network". We extract the articles based on

these keywords search in specific parts, such as title, abstract and metadata.

Along with the use of Boolean operators such as AND & OR, we create the final query

string, adapted as per the principal search system, i.e. ACM and other supplementary

sources (IEEE Xplore and ArXiv). The query string for ACM, IEEE Xplore, and ArXiv

produce 109, 362 and 142 results as of March 16, 2022 and have been mentioned in

the appendix at A.1, A.2, and A.3 respectively. We extract 420 results from the

ML4Code repository as of March 25, 2022 . Thus after merging and de-duplicating, we

collected 881 articles from all sources, which we will process in further steps.

4.1.2.6 Screening

The overall screening procedure has been as per the research protocol mentioned

previously. The high-level overview of different steps with the number of articles

selected at different phases is illustrated in Figure 4.4. Thus, at the end of the process,

we analyze 53 research studies with a full-text review. The selected research studies

(abbreviated RS) are mentioned in the appendix A.5. The different phases and

associated information have been recorded and are parked digitally on this webpage6.

4https://libguides.oulu.fi/databaseguides/acm
5https://www.ieee.org/publications/services/thesaurus.html
6https://gitlab.uni-koblenz.de/adityamehta/master-thesis

4.1. SYSTEMATIC LITERATURE REVIEW 29

Figure 4.4 Workflow: Systematic Literature Review

SLR involves manual efforts and activities at various stages making it a

time-consuming task. Tools supporting different phases help reduce the time and

effort. It does not compromise the quality because the researcher takes the final

decision [80]. Exploiting benefits, we utilize tools such as Parsifal, Rayyan [80], and

Thoth [81]. We used these tools to shortlist the papers by reading through the title and

abstract in the first screening stage, marking them as accepted or rejected before

quality assessment. All software tools used in this study are listed at A.4.

4.1.2.7 Data Analysis

We follow the data extraction form 4.2 to analyze the selected articles for a full-text

review to identify the answers to research questions.

4.1.3 Reporting

The results of data analysis and evidence synthesis has been reported and discussed

comprehensively in the next chapter 5.

Chapter 5

Analysis and Results

This chapter discusses the analysis and results from extracted data to find research

trends and answers to stated research questions. Insights enable us to synthesize

evidence based on empirical research and contribute to creating the taxonomy of

representations, DL models, and the GRL4SE field.

5.1 Systematic Literature Review

5.1.1 Publication trends

First, we start by measuring the research activity based on the distribution of

publications over the last few years and shown in Figure 5.1. Though we considered

identifying studies from the last ten years, however, we found studies only since 2018

in papers selected in the SLR. The pioneering work done by [10] represented

code-as-graph, which inspired the GRL field with graphical representations of code.

This trend from the analysis shows a continuous growth in the papers published each

year. Openreview 1 is a platform to promote openness in scientific communication,

specifically the peer review process enabled with web-based interfaces, databases and

APIs. [82] surveyed the research papers on Openreview in 2017 to identify trends

across various fields of deep learning research. They find GRL as one of the top

actively researched areas, along with other equivalent active research areas such as

1https://openreview.net/about

30

5.1. SYSTEMATIC LITERATURE REVIEW 31

reinforcement learning, adversarial ML, natural language processing and computer

vision. Our results confirm the similar trend found in their results, i.e. number of

publications in the GRL field is growing continuously in recent years.

Figure 5.1 Analysis: Publications distribution over years

Next, we analyze the source of these publications. Specifically, we analyze the

distribution of the publication venues, which can be either a journal or a conference.

Abbreviations and full names for these venues have been mentioned adequately at

A.6. Communities in SE and AI fields have been increasingly providing attention to

conducting research on GRL in SE. Premier SE venues such as ICSE, TSE, TOSEM,

ESEM, SANER, ICST and some renowned AI venues such as ICLR, NIPS, AAAI, ICML,

ICTAI, and ICPC are identified as publication venues in our SLR. As analysis is shown

in Figure 5.2, the top 5 publication venues are ArXiv, ICLR, IEEE Access, NIPS, and

AAAI, having the high number of contributions to studies considered in our SLR study.

5.1. SYSTEMATIC LITERATURE REVIEW 32

Figure 5.2 Analysis: Publication venue for studies

Next, we measure and analyze the citations for studies. The rationale is to identify

seminal papers introducing pioneer techniques in the field which are influential in

promoting further research activity. This data has been recorded on May 24, 2022

from Google Scholar. The citation frequency distribution for all papers follows

approximately power law, with the most cited paper having citations count more than

twice of the second most-cited paper, and so on.

5.1. SYSTEMATIC LITERATURE REVIEW 33

Figure 5.3 Analysis: Citations count for studies as per publication venue

To dig deeper, we group these highly cited papers with their respective publication

venues. This analysis has been illustrated in Figure 5.3. The top 5 publication venues

with the most influential work are ICLR, NIPS, ICPC, SANER, and ICTAI. Also, ArXiv is

another great resource since it contains preprints of papers, enabling a researcher to

identify the latest research activities. We considered ArXiv because many high-cited

papers in full-text format are easily available here. As stated previously and observed

from the graph, [10] is the pioneering work in the field, with an exceptionally high

number of citations, which led to the birth and subsequent evolution of the GRL field.

5.1.2 Research Question 1

5.1.2.1 Code Type

First, we begin to identify different types of code considered in the studies. This has

been analyzed and plotted in Figure 5.4. We can see that source code is the most

empirically used code type, followed by other rarely analyzed code types such as

binary code, compiler code, and assembly code.

5.1. SYSTEMATIC LITERATURE REVIEW 34

Figure 5.4 Analysis: Code Types

5.1.2.2 Code as Graph Representation Types

AST, IR and syntax code graph (SCG) are a few widely used formats, but they capture

information related only to the syntactic structure [83], [84].

To capture semantic information, ASTs are augmented with additional information by

introducing new nodes and edges. It is done to capture the flow of information by

developing the control flow, data flow, and call flow graphs, with derived

representations known as control flow graph (CFG), data flow graph (DFG), and

CDFG. To capture information and flow for control-dependence and

data-dependence, program dependence graph (PDG) is developed and used [33], [85],

[86], [87].

The various representation types have been shown diagrammatically in the Figure 5.5.

Most studies (a total of 28) use AST as the representation type, and CFG is the second

most widely used format.

5.1. SYSTEMATIC LITERATURE REVIEW 35

Figure 5.5 Analysis: Code Representation Types

Other representations

Code property graph (CPG), a representation derived from the combination of AST,

CFG and PDG, was introduced by [88] and used by [89], [37], [90], [44] focused on

vulnerabilities detection. Inspired by the NLP field with the premise that context is

essential to capture the semantics, [40] created context-aware semantics structure

(CASS) representation. Few studies created dependency graphs, e.g. [20] created class

dependency network (CDN) based on dependencies among classes. Similarly, [91]

developed a type dependency graph (TDG) of the types used in the code. The

taxonomy of various representation types with their respective study reference is

given in table 5.1.

5.1. SYSTEMATIC LITERATURE REVIEW 36

Base Representation Type Count of studies Studies reference

Abstract Syntax Tree (AST) 28 [30], [19], [86], [26], [34], [92], [12], [93], [94], [95],

[39], [35], [21], [96], [97], [24], [98], [99], [10], [100],

[101], [41], [102], [103], [42], [104], [105], [106]

Control Flow Graph (CFG) 14 [107], [30], [86], [93], [92] [108],

[23], [28], [36], [109], [110], [111], [22], [29]

Code Property Graph (CPG) 4 [89], [37], [90], [44]

Program Dependency Graph (PDG) 4 [33], [85], [86], [87]

Data Flow Graph (DFG) 3 [92], [30], [93]

Control Data Flow Graph (CDFG) 1 [108]

Control Data Call Flow Graph (CDCFG) 1 [112]

Variable-based Flow Graph (VFG) 1 [113]

Class Dependency Network (CDN) 1 [20]

Type Dependency Graph (TDG) 1 [91]

Calling Context Tree (CCT) 1 [107]

Syntax Code Graph (SCG) 1 [84]

Context-Aware Semantics Structure (CASS) 1 [40]

Intermediate Representation (IR) 1 [83]

Table 5.1 Taxonomy: Code Representation Types

5.1.2.3 Graph Representation Attributes

The graph representation is usually a combination of attributes such as

direction-orientation, weighted edges consideration, and types of nodes in the graph,

i.e. homogenous or heterogeneous as per same or different types of nodes. Weights

give special attention to specific relations in graphs such as the edges of importance.

The attention mechanism helps to include weighted edges in graphs [27]. [103] used

bidirectional graphs, with weights shared across nodes. [34] first introduced and used

multi-graphs, and this led to future studies such as [99] and [35] also using the same.

[100] was introduced the notion of heterogeneous graph, and developing on the

similar structures, [102] and [33] used heterogeneous graphs. [91] first introduced the

hypergraph structure (graph about graphs), which helped subsequent studies as [24]

to develop typed and qualified hypergraphs.

5.1. SYSTEMATIC LITERATURE REVIEW 37

5.1.2.4 Embedding Level

Embedding converts the representation into vectorized form, and DL algorithms can

consume them. The graph embedding can be simple as node-based, edge-based or

complex as graph-based [10]. The node-based embedding is the most basic and

essential representing tokens or words and associated data types. Initially, code is

converted into a node-level embedding, and various nodes exchange the information

through edges using message passing neural networks (MPNN) framework. It can

help develop the edge and graph level embedding [102].

5.1.2.5 Extensibility and platform support

The majority of studies consider the analysis of single-platform and specific

programming languages. [20] created class dependency network (CDN), which is

multi-platform and used for defect prediction in their study. Similarly, [83] developed

a compiler-independent, language-independent representation used as a

multi-platform format. The representations used by [106], [19], [30], [29], [108], [35],

[98] are extensible to other languages than ones mentioned in studies, and hence can

be made language-agnostic. Multiple studies proposed to extend their work as an

additional plug-in or a feature in a typical integrated development environment (IDE)

[39], [94].

5.1.3 Research Question 2

5.1.3.1 Software Engineering Tasks

Software defects

A defect occurs if the software is not behaving as per intended requirements and

produces unexpected results [20]. It is also known as ’bug’, and the process of

removing defects is usually known as debugging, and the research area is called

software defect prediction (SDP) [20]. SDP could be used to detect defects within a

single project (within project defect prediction WPDP) or among a collection of

projects (cross-project defect prediction CPDP), [20]. Vulnerabilities are a subset of

defects considered as weaknesses of the system, which can be attacked for malicious

purposes [114]. A vulnerability is not always necessarily a defect, and it can also be

caused by configuration or deployment parameters, or integration challenges.

Common vulnerabilities and exposures (CVE) and common weakness enumeration

5.1. SYSTEMATIC LITERATURE REVIEW 38

(CWS) are a few of the standard databases for vulnerabilities in software [21], [35],

[44], [87].

Miscellaneous SE tasks

The defect and vulnerability detection task predicts a defect or vulnerability in the

code and suggests possible fixes [36]. Code classification tasks can involve identifying

the class of code, for instance, to check and compare the code submission by students

with expected code solution at the university [83]. Analyzing the previous text tokens,

DL algorithms can predict the next token such as the name of a program element such

as variable or method [10]. Code summarization and review task includes generating

rich text summaries such as docstring (usage description) of a function [100]. Code

similarity detects clone of a code, for instance, to identify plagiarism in code [109].

Code search, generation and completion capabilities help to create and maintain

documentation of software systems and assist in the development of software systems

[96].

With gradual typing becoming popular in languages such as Python and TypeScript,

the need to infer type annotations automatically arises [91]. Type inference

capabilities can help to detect type based on the underlying data. The user can

control the verbosity level of logs, which will be printed during program execution

[106]. SE task build repair involves identifying and locating the errors in the build and

suggesting the fix to create a successful build [99]. DL techniques can help to simulate

the program behaviour and can even predict workload [103].

Address pre-fetching helps to model data flow and branch prediction helps to model

control flow during execution [110]. Given an OpenCL kernel and a choice of two

devices to run it on (CPU or GPU), a heterogeneous device mapping (DevMap) task is

used in compiler analysis to predict the device which will give the best performance

[83]. The thread coarsening task involves identifying the number of parallel threads

which should be merged to obtain faster execution time [30]. Similarly, loop

vectorization is an optimization technique for compilers to identify the number of

instructions to pack together from different loop iterations [30].

5.1.3.2 Analysis

This analysis attempts to identify trends of GRL4SE task types and is shown in Figure

5.6.

5.1. SYSTEMATIC LITERATURE REVIEW 39

Figure 5.6 Analysis: SE task types

GRL4SE is the most widely used in defect and vulnerability detection tasks. Code

classification, prediction of variable and method name, code summarization and

review, similarity and clone detection are some other common applications of

GRL4SE tasks, while other tasks such as type inference, and build repair among others

are used seldom and listed in the table in the bottom area. We create the taxonomy for

SE tasks and reference studies as given in table 5.2.

Task type References

defect and vulnerability detection [20], [22], [24], [36], [90], [97], [98], [102], [111], [21], [44], [92], [89], [35], [29], [87], [23], [30], [37]

code classification [41], [83], [108], [42], [23], [31], [94], [12], [22], [110]

variable and method name/usage prediction [10], [34], [93], [100] [111], [101], [33], [107]

code summarization and review [26], [84], [86], [95], [100], [104], [105]

similarity and clone detection [109], [28], [40], [22], [85], [19]

code search, generation, completion [113], [96], [39], [93]

heterogeneous device mapping [30], [83], [112]

compiler analysis [83], [112]

address prefetching, branch prediction [110]

type inference [91]

logs’ verbosity level prediction [106]

build repair [99]

execution time simulation and workload prediction [103]

thread coarsening and loop vectorization [30]

Table 5.2 Taxonomy: SE Tasks

5.1. SYSTEMATIC LITERATURE REVIEW 40

5.1.3.3 Applications of code representations

Several studies used a graph-based representation of code, which we discuss here

briefly. [115] used code represented in a graph-based format with a combination of

token-based sequence and structure-based graphs. They train the model using a

graph neural network and the gated recurrent unit used to fix and correct syntactical

errors in the code. [116] created a program-derived semantics graph (PSG), a new

graphical structure to capture the semantics of code, but they do not use it further for

ML applications in SE. [117] performed a comparison between graph embedding

techniques node2vec and Bag of Graphs. These graph embedding techniques helped

to detect cryptography misuse in code. [118] converts code to graphs and stores this

representation in a graph database. It is accessed to predict the class name

recommendations by performing graph mining.

[119] uses graph-based code representation and GRL along with NLP for vulnerability

analysis. [120] uses NLP techniques along with graph mining to generate a graph of

inter-related requirements (IRR) to find clusters of code. [121] uses AST subtrees along

with topic modelling (a NLP technique) to summarize functional concepts of defects,

used further for defect prediction. [122] uses NLP query text and code represented as

a combined graph-based format, which is used in graph matching and searching

model to find the best matching code snippet.

[123] creates program interaction dependency graph (PIDG) for similarity-based

plagiarism identification in code. [124] creates control flow graphs used to grade

assignments by comparing the similarity between code submissions based on graph

mining. [125] performs similarity detection by using TF-IDF and cosine similarity

techniques to identify the cryptography dataset of CFG in C#.

[126] creates a graph from commit patches for just-in-time bug prediction across

stages of code in the SLDC lifecycle. [127] uses meta-modelling and graph-based

verification process using graph transformation in the DL programs to detect faults

and design inefficiencies.

5.1. SYSTEMATIC LITERATURE REVIEW 41

5.1.4 Research Question 3

5.1.4.1 Learning Types

Machine Learning can be classified as supervised, unsupervised, or semi-supervised,

as per the availability, usage of the target variable and the end goal of the task. We

analyze the learning types in the studies shown in Figure 5.7. We observe that most

studies train the ML model in a supervised manner. Only two studies [12] and [33]

utilized unsupervised ML, while only [102] used a self-supervised manner.

Figure 5.7 Analysis: (Machine) Learning types

5.1.4.2 Neural Network Types

Various types of neural network models and architectures have evolved in the

GRL4SE. The initial models depended on the graph mining algorithms. Initially used

in computer vision, convolution neural networks (CNN) derive multiple architectures

based on convolution operations among graphs [26]. With the advent of message

passing approaches, newer families of models included GNN-based models [25]. The

attention mechanism has inspired GRL researchers to develop attention-based model

architectures, which is an active research area today. The complete taxonomy of

various model architectures is summarized and shown in the table 5.3.

5.1. SYSTEMATIC LITERATURE REVIEW 42

Graph Networks Convolution-based and Recurrent Models Graph Neural Network-based Models Attention-based Models

Graph Matching Network (GMN) Graph Convolution Network (GCN) Graph Neural Network (GNN) Graph Attention Network (GAT)

Graph Isomorphism Network (GIN) Convolutional Graph Neural Network (ConvGNN) k-dimensional GNN (k-GNN) Graph Relational Embedding Attention Transformer (GREAT)

Crystal Graph Convolutional Network (CGCN) Multi-Flow Graph Neural Network (MFGNN) Gated Graph Attention Neural Network (GGANN)

Deep Graph Convolutional Neural Network (DGCNN) Gated Graph Neural Network (GGNN) Attention-based Heterogeneous GNN (AHG)

Directed Graph Convolutional Neural Network (DGCNN) GraphSAGE (SAmple and aggreGatE) Multi-hop Attention Graph Neural Network (MAGNA)

Simplified Graph Convolution Network (SGC) Graph Interval Neural Network (GINN) Hetereogeneous Graph Transformer (HGT)

Relational Graph Convolutional Network (RGCN) GN-Transformer (GNT)

Recurrent Graph Network (RGN)

Table 5.3 Taxonomy: Neural network model families

5.1.4.3 Traditional methods

Traditional approaches consist of manual feature engineering [23] based on statistical

metrics of source code such as Halstead, CK, McCabe’s [36]. Traditional

representations did not focus on basic blocks, which is the basis of contextual

dependencies in the source code [22].

For bug detection, formal reasoning and combinatorial search are traditionally done

manually by experts, which is a time-consuming process [102]. For vulnerability

detection, traditionally used methods included static analysis, dynamic analysis, and

symbolic execution. Static analysis, driven by rule-based reasoning, resulted in a high

number of false positives [21], can often detect a limited set of bugs [98]. Dynamic

analysis (fuzzing, dynamic taint analysis or symbolic execution) is often

resource-hungry, and tedious, yet it does not have a comprehensive coverage [44],

[92]. Also, these techniques work at the component or file level, not at the function

level in the source code [89]. NLP-based methods for vulnerability detection often do

not have a deep granularity, cannot handle cross-function vulnerabilities, and rely

heavily on expert knowledge [37].

For clone detection, traditionally done using static analysis were able to target only

type 1, 2, 3 clones (out of 4 clone types) [85], [19]. For code similarity, conventional

methods have less precision and scalability, and similarity based on syntactic features

is too restrictive [85]. Rule-based approaches based on predefined rules and

templates were limited in types of summaries that could be generated [95].

In the task variable name or usage prediction, traditional methods include static

analyzers [10] and NLP techniques. However they often have problems of

out-of-vocabulary predictions, as vocabulary cannot be fixed for code words [34], [91],

[106]. Traditional approaches often faced problems in generalization due to training

on synthetic data [35], long-range dependency capture issues [104], [42].

5.1. SYSTEMATIC LITERATURE REVIEW 43

5.1.4.4 GRL Methods

Role of GRL

Here, we discuss how the introduction of GRL methods has helped to overcome

challenges with traditional methods. Syntactic and semantic properties of code can

be best retained with a graphical representation [10], using the embedding layer of

code [21], [101]. [110] suggested utilizing GNN to learn fused representations of

source code and its execution together. [104], [89], [106] utilized GNNs to create code

representations.

[104] developed the Transformer-XL model to alleviate problems of long-range

dependency. [86] used a graph diffusion mechanism to model longer-range token

dependencies adequately. [34] developed a graph-structured cache for

out-of-vocabulary problems in NLP-based techniques. [20] used SMOTETomek

sampling to handle a class imbalance in defect prediction approaches.

[28] suggested using capsules to reduce mean square error for similarity detection.

[103] suggested using a graph neural network as a surrogate model of a compiler.

Therefore, instead of a large search space, a surrogate model is trained to predict the

runtime behaviour of programs. As all the relationships in code are not equal, the

attention mechanism helps to learn the most important tokens in code [26].

Benefits and impact

GRL reduced the requirements on amounts of training data, model capacity, and

training regime [10]. Use of GRL improved performance of models on various metrics

such as accuracy, precision, recall, specifically reducing the false positive rates [34],

[21], [41], [110], [106], [19], [108], [29], [107], [42], [23]. GRL-based architectures are

highly scalable, generalize well on unseen data [109], [111], [86].

5.1.5 Research Question 4

5.1.5.1 Dataset Types

We analyze the different datasets to identify the most common ones for various

applications in experiments. This is shown in the Figure 5.8. Here we show only the

top 10 most frequently analyzed datasets. Programming online judge (POJ), Juliet test

suite, PROMISE and SARD are the most commonly used datasets. Dataset choice is

5.1. SYSTEMATIC LITERATURE REVIEW 44

heavily dependent on the SE task under consideration. Each study in SLR did not

necessarily experiment, while few studies conducted multiple experiments.

Figure 5.8 Analysis: Number of experiments for dataset types

5.1.5.2 Languages

Here, we attempt to identify the common programming languages analyzed in the

empirical experimental studies. This analysis is in Figure 5.9 showing the top 10 most

frequent languages. We observe that Java is mostly empirically analyzed. Other

frequently used languages are C, C++ and Python. Decision choice of language can be

based on the background knowledge and familiarity of the researcher and the

availability of suitable technical tools.

5.1. SYSTEMATIC LITERATURE REVIEW 45

Figure 5.9 Analysis: Dataset Languages

5.1.5.3 Evaluation Metrics

A summary of various metrics and their description is depicted in the table 5.4.

Metric Name Description

Accuracy number of correct predictions out of all predictions in a dataset

Precision number of correctly predicted relevant data out of all retrieved data

Recall number of the correctly predicted relevant data out of all relevant data

F1 Score harmonic mean of precision and recall, a combined measure of effectiveness

Area Under Curve

AUC Score
relationship between true positive rate (TPR) and false positive rate(FPR)

Recall-Oriented Understudy for Gisting Evaluation

ROUGE Score
evaluation of machine summary/translation against human-produced references

Bilingual Evaluation Understudy

BLEU Score
similarity between two sentences in evaluation of machine translation systems

Table 5.4 Summary: Evaluation Metrics

Usually, for evaluation purposes, ML models utilize metrics such as accuracy,

elements of confusion matrix or derived metrics such as precision, recall and F1 score

[128]. Since the training set is usually class imbalanced, i.e. contains a large number of

negative examples with rare positive examples, a ML model can offer high accuracy

5.2. DISCUSSION 46

just by predicting the negative class irrespective of the input, hence accuracy is not a

reliable metric [128], [129].

Figure 5.10 Analysis: Evaluation Metrics

The analysis for the top 10 evaluation metrics is in Figure 5.10. We observe that even

though not a reliable metric, accuracy is the most commonly used, followed by F1

score, precision, recall and AUC. ROUGE-L, METEOR, and BLEU scores are other

evaluation metrics for specific tasks such as machine summary or translation.

5.2 Discussion

5.2.1 Combined Taxonomy of GRL4SE field

We aim to create a combined taxonomy with hierarchy-based levels to get a high-level

overview of GRL4SE (Figure 5.11). The first level groups different SE tasks, and the

next layers provides information about the representation type, DL model, and

example study. For example, we consider the pioneer study [10] for the task variable

name prediction. Next, we observe that the representation type is AST, and the model

architecture used is a gated graph neural network (GGNN). At the leaf nodes, we see

that multiple studies (RS1, RS3, RS43) conducted similar experimental task.

5.2. DISCUSSION 47

GRL for SE

Address Prefetching &
Branch Prediction

Search, Generation, Completion

Type Inference

Variable & method
name/usage prediction

Defect & Vulnerability Prediction

Log verbosity prediction

Build Repair

Compiler Analysis

Execution Time Simulation

Summarization & Review

Similarity & Clone Detection

AST

VFG

GNN

GGNN

GGNN

PDG RGCN

TDG GNN

AST GGNN

RS1

RS3

AST, CFG, DFG GNT RS30

AST

GNN RS23

GNN, GREAT

RS42

RS53

RS16

CFG, CCT GGNN RS37

CFG

DGCNN RS2

GCN, GIN, SGC,
GAT, GraphSAGE

ConvGNN RS50

CDN GCN RS52

AST GGNN RS10

GGNN

RS4

CPG

GGNN RS14

AST, CFG, DFG

CGCN RS28

GGNN, GAT, GCN RS33

RS34

ACFG GNN, GAT RS36

SCG GNT RS31

GAT RS51

CFG GGNN RS9

AST GGNN RS21

CDCFG GCN, GAT, GGNN RS38

AST GCN RS8

AST GGNN, GMN RS11

PDG GNN RS24

MFGNN RS49

AST GGANN
RS5

IR GGNN RS18

CFG, CDFG DGCNN RS35

RS39

GCN RS44

MVG GGNN RS46

GAT RS47

RGN RS6

GCN RS48

AST

AHG, HGT RS13

ConvGNN

RS19

GAT RS27

AST, CFG, PDG MAGNA RS29

SCG GNT RS31

RS32

CFG

GNN RS12

GCN RS17

CASS GNN RS22

RS26

RS20

RS7

RS25

RS43

RS45

CFG GINN RS15

Code Classification

RS11

MFGNN RS49

PDG GCN, GAT, k- GNN RS41

GNN

IR GGNN RS18

CFG

GCN RS44

GGNN RS9

MFGNN RS49

GGNN, GMN RS11

HGT, AHG RS13

AST, CFG, DFG GNT RS30

Heterogenous device mapping IR GGNN RS18

AST, CFG, DFG GNN RS16

CDCFG GCN, GAT, GGNN RS38

Thread coarsening,
loop vectorization

AST, CFG, DFG GNN RS16

RS40

Figure 5.11 Taxonomy: GRL for SE (Zoom-in for the best view)

5.2. DISCUSSION 48

5.2.2 Evaluation: Graph-based and traditional approaches

As per the SE task in context, we evaluate different approaches based on their

effectiveness in terms of performance (considering evaluation metrics), limitations,

and threat to validity.

Defect and vulnerability detection

Graph-based approaches provide better results than traditional approaches such as

FlawFinder [37], [87], logistic regression classifier, random forest classifier [97],

support vector machines (SVM) [23], [37] - Bag Of Words [22], [36], CNN [21], [44],

[89], [92], [97], RNN [44], [89], TBCNN [23], [36], LSTM [23], Bi-LSTM [21], [37], [92].

Limitations include input code expected to be stripped, compile-able [29], model

trained on synthetic rather than real datasets [89], generalization based on chosen

dataset [97], missing projects in datasets [22], or data annotation issues [44], [87].

Program classification

Graph representation methods are found to give better performance than non-graph

approaches such as static mapping [83], TBCNN [23], [31], [41], [42], [83], LSTM [23],

[83], [110], SVM [22], [23], Weisfeiler-Lehman Test, ideal static selector (ISS) [94].

Challenges include limited dataset with missing projects, training data only in one

language with possible outliers [22].

Prediction of name/usage for variable and methods

Approaches using graph representation are found to provide better results than

alternative conventional approaches such as BERT [107], word2vec, bi-directional

RNN [10], code2seq, code2vec [101], TransCodeSum [100].

The main challenges are limited data evaluation scope, coverage of transformations,

and manual processes of bug review and inspection [101].

Code summarization and review

Graph-based approaches performed better than vanilla transformers [86], tree2seq

[84], graph2seq, code2seq, Bi-LSTM [26], [95], [104], Tree-based RNN[105].

5.2. DISCUSSION 49

Some challenge include impact of neighboring classes for code summary generation

[95], inter-rater bias among human evaluators [26], [95], large training time [105],

possibility of data leaks [104].

Similarity and clone detection

Graphical methods outperform traditional approaches such as tree-based

convolution [85], RtvNN (RNN-based clone detector), CDLH (Clone Detection with

Learning to Hash), [19], code2vec, code2seq, seq-RNN, seq-transformer,

Bag-of-features (BoF), recurrent neural network (RNN) [40], SVM [22].

The main challenges are the requirement of compile-able code, static analysis to

generate PDG, inability to extend to incomplete programs [85], and limited program

size processing [109].

Code search, generation, completion

Graph-based representation methods are found to perform better than LSTM [39],

plain transformer [39], [93]. Major challenges are the small dataset and scalability

because of LLVM IR, which can only extract the program with complete dependencies

[113].

Heterogeneous device mapping and compiler analysis

Graphical approaches outperform traditional ones as inst2vec [112], LSTM, TBCNN,

static mapping [83]. Limitations include simplifying representation vocabulary of

instruction and operand types, addressing class imbalance [83].

Miscellaneous tasks

For the task of address pre-fetching and branch prediction, graphical methods

outperform traditional baselines such as stride data prefetcher, address correlation

(AC) prefetcher, LSTM-delta [110]. For type inference, graphical approaches

outperform conventional methods such as inference by TypeScript compiler [91], and

the limitation is the simplified treatment of function types and generic types (i.e.,

collapsing them into their non-generic counterparts) [91].

For logs’ verbosity level prediction task, graphical approaches outperform other

baselines such as RNN - LSTM model [106]. A challenge is a poor generalization on

unseen data because of differences in logging styles of projects. For the build repair

task, graph-based approaches outperform other methods such as

5.2. DISCUSSION 50

sequence-to-sequence [99] with the ability to improve performance by including

more context and performing more propagation steps. A limitation is to understand

the type signatures of rare methods. For the task of prediction of execution time and

workload, graphical approaches generalize better than those without graph

convolution component [103].

5.2.3 Adversarial attacks

In DL, neural networks are often vulnerable to adversarial inputs, which intentionally

lead the model to make a specific (incorrect) prediction [130]. The basic idea is to add

intentionally-created noise to the correctly labelled inputs so that model will give

desired incorrect output. In a non-targeted attack, the incorrect output is caused by

reasons tracing back not only to changes in input but instead to systemic errors in the

ecosystem. Since a program code is a discrete object having certain syntactic and

semantic properties, adding specific noise types such as those used for the attack on

image input is not possible [32]. [130] developed the Discrete Adversarial

Manipulation of Programs (DAMP) framework to generate targeted adversarial attack

examples.

The defence against such an attack includes two types of techniques. The first group

of methods contains a gatekeeper element to check the incoming inputs and helps to

use existing models without retraining needs. The second set of methods requires

retraining the model using a modified training dataset or with a different loss function

than the original. Some techniques can drop the success rates of attacks significantly,

with a small cost of 2% degradation in accuracy [32], [130]. Such methods involve

studying various transformations in input and their impact on the outputs, so that

robustness of models can be improved [101]. Such rewrite of code can help to

enhance generalization capabilities as well [35], [102].

5.2.4 Challenges and implications

Major challenges are explainability and interpretability of the model [33], [35], [92],

limited generalization to unseen datasets [22], [92], [101], extensibility to other

languages, SE tasks and data types [23], [41], [91], [97], [100], [113]. Another major

challenge is the lack of distributed representations for compiled code [23].

Investigation of false positives, training on program slices to reduce noise in data, and

5.2. DISCUSSION 51

cross-project prediction [21], [89] are a few open challenges [44], [102]. Reducing the

computation time by increasing training speed [41], or using pre-trained data [31], are

also some open research challenges.

Implications

Computational costs could be high for large graphs, increasing training time [34],

[107]. The major implication is the requirement of sophisticated hardware

workstations with high computational capabilities, a large amount of memory, and

multiple GPUs [10], [12], [19], [26], [29], [30], [35], [44], [83], [87], [95], [98], [102]–[104],

[108], [109], [111].

Chapter 6

Conclusion

6.1 Conclusion

In this study, we present results from a SLR analysis from top research venues, with a

methodology based on guidelines by [72]. The process began by defining a set of

research questions about the applications of graph-based DL models to SE tasks. A

pilot search using a base query string helped refine the query string as per relevant

studies found in the results. We conducted a literature search on ACM, IEEE Xplore,

ArXiv, and ML4Code repositories. By following quality assessment protocols, our

study surveys 53 primary studies. As all studies are published within the last five years,

it is evident that machine learning and software engineering communities are

conducting high research activity in this area. Based on the information extracted, we

identified answers to research questions and created taxonomies on various aspects

of the GRL approach to SE tasks. This SLR provides future researchers with the

necessary insights to apply GRL for applications within the SE field.

The first research question was to identify types of code and graphical

representations. As per the survey results, source code is the most widely used and

represented as syntactic structures in AST, IR, or as flow graphs such as CFG, DFG, or

as dependency graphs such as PDG, CDN, or TDG. The second RQ aimed to

determine applications of GRL in SE tasks. We identified various SE tasks with defect

and vulnerability prediction, program classification, prediction of name and usage of

methods and variables, code summarization, and clone detection as prevalent tasks.

52

6.2. THREATS TO VALIDITY 53

The third RQ was about finding learning types, GRL models, benefits and

implications. Supervised is the most common learning type, attention-based deep

neural networks are increasingly gaining traction, and GRL techniques outperform

traditional techniques, such as those from non-graph methods such as code-as-text

approaches of NLP. The fourth research question aimed to identify datasets,

languages, and evaluation metrics. POJ, Juliet Suite, SARD, GCJ, and PROMISE are a

few most commonly used datasets, while Java, C, C++, and Python as commonly

tested languages. Accuracy, F1 score, precision, recall, and AUC are a few top

evaluation metrics, along with ROUGE and BLEU scores used in machine summary or

translation tasks. Also, we provided a combined taxonomy of the field, which helps to

identify specific representation and DL model architecture and an example reference

study to follow. The implications include high computational costs, explainability,

interpretability, and extensibility to other languages and projects.

6.2 Threats to validity

Threats to validity could be analyzed from two aspects: bias and validity. We consider

study selection bias, researcher bias, publication bias and internal and external

validity.

Bias

Study selection relies on the search strategy, research repositories, selection criteria

and quality analysis. As the search query string is created with terms matching to

research questions, the query string may have missed some studies on the borderline

between SE, DL, GRL, and ML fields. Some studies may use other terms in their title,

abstract, and keywords, hence we might miss finding them. To address this, we chose

a combination of principal and supplementary research sources and modified query

strings as per common terminologies and guidelines of databases. The study selection

and quality assessment in screening studies were conducted and reviewed by a single

author, posing a threat to the reliability aspect.

The study does not address systemic biases that occurred due to publication bias, as

the positive results are likely to be published as compared to negative ones. Also,

researchers tend to claim their methods are the best and outperform others on chosen

datasets. This may lead to an overestimation of performance. We tried to address this

6.3. SUMMARY 54

by creating quality assessment questions to avoid bias toward some particular

models. Also, as we did not consider grey literature, publication bias is likely to exist to

some extent.

Validity

Internal validity is a prerequisite for external validity. Threats to internal validity could

be due to errors in data extraction. To decrease the inaccurate data extraction threat,

we improved the data assessment form iteratively to address the research questions

correctly. External validity is the extent of effects observed in the study to be

applicable in unknown environments, hence generalization and direct applicability to

a new SE task are limited. This work does not include an experiment-based approach

and relies on the claims of other research articles about results so possesses a limited

external validity.

6.3 Summary

Though GRL presents solutions to a wide range of SE tasks, however, traditional

methods are still cost-effective for simple and repeatable use cases because of little

resource and computation needs. GRL4SE is complementary to traditional

approaches and helps to overcome challenges in solving complex problems for

advanced use cases.

6.4 Future work

Based on a large number of research articles collected, hierarchical clusters with

mapping of SE task to SDLC stages can be created [14]. As the study provides the

reader with relevant information to apply GRL in the SE context, we propose two

potential research possibilities. The first possibility could be: given a system with

language and framework of choice, can we use GRL to predict the input software

module as one of the model, view and controller (MVC) components? In our research,

we found that MVC components overlap in terms of underlying code, and defining

well-defined boundaries to separate them is an open research challenge. Another

potential research avenue can be: given a system with language and framework of

choice, can we use GRL to predict a software module as either a front-end or back-end

component?

Appendix A

Appendix

A.1 ACM Search Query String

[[Title: code] OR [Title: software]

OR [Title: program]] AND [Title: graph]

AND [[Abstract: source] OR [Abstract: code]

OR [Abstract: software] OR [Abstract: program*]

OR [Abstract: synta*] OR [Abstract: semantic]

OR [Abstract: represent*] OR [Abstract: engine*]

OR [Abstract: "se"]] AND [[Abstract: graph]

OR [Abstract: tree]] AND [[Abstract: neural]

OR [Abstract: net*] OR [Abstract: "?nn"]

OR [Abstract: learn*] OR [Abstract: machine]

OR [Abstract: deep] OR [Abstract: "ml"]

OR [Abstract: "dl"] OR [Abstract: data*]]

AND [Publication Date: (03/01/2012 TO 03/31/2022)]

A.2 IEEE Xplore Search Query String

("Document Title":Code OR "Document Title":Software

OR "Document Title":Program) AND ("Document Title":Graph)

AND ("All Metadata":Source OR "All Metadata":Code

55

A.3. ARXIV SEARCH QUERY STRING 56

OR "All Metadata":Software OR "All Metadata":Program*

OR "All Metadata":Synta* OR "All Metadata":Semantic

OR "All Metadata":Represent* OR "All Metadata":Engine*

OR "All Metadata":"SE") AND ("All Metadata":Graph

OR "All Metadata":Tree) AND ("All Metadata":Neural

OR "All Metadata":Net* OR "All Metadata":"?NN"

OR "All Metadata":Machine OR "All Metadata":Deep

OR "All Metadata":Learn* OR "All Metadata":"ML"

OR "All Metadata":"DL" OR "All Metadata":data*)

Filters Applied: 2012 - 2022

A.3 ArXiv Search Query String

size: 100; date_range: from 2012-01-01 to 2022-12-31;

classification: Computer Science (cs);

include_cross_list: True; terms:

AND title=Code OR Software OR Program;

AND title=Graph; AND abstract=Source OR Code

OR Software OR Program* OR Synta*

OR Semantic OR Represent* OR Engine* OR "SE";

AND abstract=Graph OR Tree;

AND abstract=Neural OR Net* OR "?NN"

OR Machine OR Deep OR Learn* OR "ML" OR "DL" OR data*

A.4. SOFTWARE TOOLS 57

A.4 Software Tools

Programming Python, Jupyter Notebook

SLR Automation Parsifal, ASReview, Rayyan, Thoth

Reference Manager Mendeley Desktop, Mendeley Reference Manager (complementary features), JabRef, Bibtool

Diagrams Draw.io Diagrams, Miro, Inkscape

TeX TeXstudio, Overleaf

VPN WireGuard

PDF Reader Sumatra PDF

Data Collection Microsoft Excel

Markdown Files Zettlr

Table A.1 Software tools used in this study

A.5. SELECTED RESEARCH STUDIES FOR SLR 58

A.5 Selected Research Studies for SLR

ID Title Authors Year

RS1 Learning to represent programs with graphs Allamanis, Miltiadis; Brockschmidt, Marc; Khademi, Mahmoud 2018

RS2 Convolutional neural networks over control flow graphs for software defect prediction Phan, Anh Viet; Nguyen, Minh Le; Bui, Lam Thu 2018

RS3 Open Vocabulary Learning on Source Code with a Graph-Structured Cache Cvitkovic, Milan; Singh, Badal; Anandkumar, Anima 2018

RS4 Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks Zhou, Yaqin; Liu, Shangqing; Siow, Jingkai; et al. 2019

RS5 Program Classification Using Gated Graph Attention Neural Network for Online Programming Service Lu, Mingming; Tan, Dingwu; Xiong, Naixue; et al. 2019

RS6 Unsupervised Classifying of Software Source Code Using Graph Neural Networks Vytovtov, Petr; Chuvilin, Kirill 2019

RS7 Generative Code Modeling with Graphs Brockschmidt, Marc; Allamanis, Miltiadis; Gaunt, Alexander 2019

RS8 Simulating Execution Time of Tensor Programs using Graph Neural Networks Tomczak, Jakub M.; Lepert, Romain; Wiggers, Auke 2019

RS9 Learning Execution through Neural Code Fusion Shi, Zhan; Swersky, Kevin; Tarlow, Daniel; et al. 2019

RS10 Using GGNN to recommend log statement level Li, Mingzhe; Pei, Jianrui; He, Jin; et al. 2019

RS11 Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree Wang, Wenhan; Li, Ge; Ma, Bo; et al. 2020

RS12 FuncGNN: A graph neural network approach to program similarity Nair, Aravind; Roy, Avijit; Meinke, Karl 2020

RS13 Learning to Represent Programs with Heterogeneous Graphs Wang, Wenhan; Zhang, Kechi; Li, Ge; et al. 2020

RS14 Learning to map source code to software vulnerability using code-as-a-graph Suneja, Sahil; Zheng, Yunhui; Zhuang, Yufan; et al. 2020

RS15 Learning semantic program embeddings with graph interval neural network Wang, Yu; Wang, Ke; Gao, Fengjuan; et al. 2020

RS16 Deep Program Structure Modeling Through Multi-Relational Graph-based Learning Ye, Guixin; Tang, Zhanyong; Wang, Huanting; et al. 2020

RS17 Code Characterization with Graph Convolutions and Capsule Networks Haridas, Poornima; Chennupati, Gopinath; Santhi, Nandakishore; et al. 2020

RS18 ProGraML: Graph-based Deep Learning for Program Optimization and Analysis Cummins, Chris; Fisches, Zacharias V.; Ben-Nun, Tal; et al. 2020

RS19 Improved code summarization via a graph neural network LeClair; Alexander Haque; Sakib Wu; et al. 2020

RS20 LambdaNet: Probabilistic Type Inference using Graph Neural Networks Wei, Jiayi; Goyal, Maruth; Durrett, Greg; et al. 2020

RS21 Learning to Fix Build Errors with Graph2Diff Neural Networks Tarlow, Daniel; Moitra, Subhodeep; Rice, Andrew; et al. 2020

RS22 MISIM: A Neural Code Semantics Similarity System Using the Context-Aware Semantics Structure Ye, Fangke; Zhou, Shengtian; Venkat, Anand; et al. 2020

RS23 HOppity : LEarning GRaph TRansformations DEtect and FIx BUgs in PRograms Tech, Georgia; Wang, Ke 2020

RS24 Modeling Functional Similarity in Source Code with Graph-Based Siamese Networks Mehrotra, Nikita; Agarwal, Navdha; Gupta, Piyush; et al. 2021

RS25 Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs Wang, Yanlin; Li, Hui 2021

RS26 deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search Zeng, Chen; Yu, Yue; Li, Shanshan; et al. 2021

RS27 CoCoSum: Contextual Code Summarization with Multi-Relational Graph Neural Network Wang, Yanlin; Shi, Ensheng; Du, Lun; et al. 2021

RS28 Software Vulnerability Detection via Deep Learning over Disaggregated Code Graph Representation Zhuang, Yufan; Suneja, Sahil; Thost, Veronika; et al. 2021

RS29 Graph Conditioned Sparse-Attention for Improved Source Code Understanding Cheng, Junyan; Fostiropoulos, Iordanis; Boehm, Barry 2021

RS30 Learning to Extend Program Graphs to Work-in-Progress Code Li, Xuechen; Maddison, Chris J.; Tarlow, Daniel 2021

RS31 GN-Transformer: Fusing Sequence and Graph Representation for Improved Code Summarization Cheng, Junyan; Fostiropoulos, Iordanis; Boehm, Barry 2021

RS32 Transformer-XL with Graph Neural Network for Source Code Summarization Zhang, Xiaoling; Yang, Shouguo; Duan, Luqian; et al. 2021

RS33 Vulnerability Detection in C/C++ Source Code With Graph Representation Learning Wu, Yuelong; Lu, Jintian; Zhang, Yunyi; et al. 2021

RS34 Combining Graph-Based Learning With Automated Data Collection for Code Vulnerability Detection Wang, Huanting; Ye, Guixin; Tang, Zhanyong; et al. 2021

RS35 Graphs based on IR as Representation of Code Faustino, Anderson 2021

RS36 BugGraph: Differentiating Source-Binary Code Similarity with Graph Triplet-Loss Network Ji, Yuede; Cui, Lei; Huang, H. Howie 2021

RS37 GRAPHSPY: Fused Program Semantic Embedding through Graph Neural Networks for Memory Efficiency Guo, Yixin; Li, Pengcheng; Luo, Yingwei; et al. 2021

RS38 Learning Code Representations Using Multifractal-based Graph Networks Ma, Guixiang; Xiao, Yao; Capota, Mihai; et al. 2021

RS39 Student Program Classification Using Gated Graph Attention Neural Network Lu, M.; Wang, Y.; Tan, D.; et al. 2021

RS40 Software Defect Prediction for Specific Defect Types based on Augmented Code Graph Representation Xu, Jiaxi; Ai, Jun; Shi, Tao 2021

RS41 DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural Network Cheng, Xiao; Wang, Haoyu; Hua, Jiayi; et al. 2021

RS42 Self-Supervised Bug Detection and Repair Allamanis, Miltiadis; Jackson-Flux, Henry; Brockschmidt, Marc 2021

RS43 On the generalizability of Neural Program Models with respect to semantic-preserving program transformations Rabin, Md Rafiqul Islam; Bui, Nghi D. Q.; Wang, Ke; et al. 2021

RS44 Bin2vec: learning representations of binary executable programs for security tasks Arakelyan, Shushan; Arasteh, Sima; Hauser, Christophe; et al. 2021

RS45 Universal Representation for Code Liu, Linfeng; Nguyen, Hoan; Karypis, George; et al. 2021

RS46 Multi-View Graph Representation for Programming Language Processing: An Investigation into Algorithm Detection Long, Ting; Xie, Yutong; Chen, Xianyu; et al. 2022

RS47 Algorithm Selection for Software Verification using Graph Attention Networks Leeson, Will; Dwyer, Matthew B. 2022

RS48 Turn Tree into Graph: Automatic Code Review via Simplified AST Driven Graph Convolutional Network Wu, B.; Liang, B.; Zhang, X. 2022

RS49 Precise Learning of Source Code Contextual Semantics via Hierarchical Dependence Structure and Graph Attention Networks Zhao, Zhehao; Yang, Bo; Li, Ge; et al. 2022

RS50 Graph Neural Network for Source Code Defect Prediction Sikic, Lucija; Kurdija, Adrian Satja; Vladimir, Klemo; et al. 2022

RS51 Vulmg: A Static Detection Solution For Source Code Vulnerabilities Based On Code Property Graph and Graph Attention Network Haojie, Zhang; Yujun, Li; Yiwei, Liu; et al. 2022

RS52 GCN2defect : Graph Convolutional Networks for SMOTETomek-based Software Defect Prediction Zeng, Cheng; Zhou, Chun Ying; Lv, Sheng Kai; et al. 2022

RS53 HEAT: Hyperedge Attention Networks Georgiev, Dobrik; Brockschmidt, Marc; Allamanis, Miltiadis 2022

Table A.2 Selected research studies for SLR

A.6. JOURNALS AND CONFERENCES NAMES OF STUDIES 59

A.6 Journals and conferences names of studies

Journal or Conference Name Full Name

AAAI Association for the Advancement of Artificial Intelligence

ArXiv ArXiv

CCS Computer and Communications Security

CCWC Computing and Communication Workshop and Conference

Cybersecurity Cybersecurity

DAC Design Automation Conference

DSA Dependable Systems and Their Applications

ESEM Empirical Software Engineering and Measurement

ICBD International Conference on Big Data

ICCWAMTIP International Computer Conference on Wavelet Active Media Technology and Information Processing

ICLR International Conference on Learning Representations

ICML International Conference on Machine Learning

ICPC International Conference on Program Comprehension

ICSEW International Conference on Software Engineering Workshops

ICST International Conference on Software Testing, Verification and Validation

ICTAI International Conference on Tools with Artificial Intelligence

IEEE Access IEEE Access

ISSRE International Symposium on Software Reliability Engineering

IST Information and Software Technology

JSS Journal of Systems and Software

LNAI Lecture Notes in Artificial Intelligence

NIPS Neural Information Processing Systems

OIA Open Innovations Association

PACMPL Proceedings of the ACM on Programming Languages

PACT Parallel Architectures and Compilation Techniques

SANER Software Analysis, Evolution, and Reengineering

SBLP Brazilian Symposium on Programming Languages

SMC International Conference on Systems, Man, and Cybernetics

TIFS IEEE Transactions on Information Forensics and Security

TOSEM Transactions on Software Engineering and Methodology

TSE IEEE Transactions on Software Engineering

Table A.3 Journals and Conferences Names

Bibliography

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,

“Geometric deep learning: Going beyond euclidean data,” IEEE Signal

Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[2] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric deep

learning: Grids, groups, graphs, geodesics, and gauges,” arXiv preprint

arXiv:2104.13478, 2021.

[3] D. S.-D. Jérôme Tubiana Haim J. Wolfson, “Scannet: An interpretable

geometric deep learning model for structure-based protein binding

site prediction,” Nature, 2022. DOI:

10.1038/s41592-022-01490-7.

[4] M. Cheung and J. M. F. Moura, “Graph neural networks for covid-19

drug discovery,” in 2020 IEEE International Conference on Big Data (Big

Data), 2020, pp. 5646–5648. DOI:

10.1109/BigData50022.2020.9378164.

[5] M. Pradel and S. Chandra, “Neural software analysis,” Communications

of the ACM, vol. 65, pp. 86–96, 1 Nov. 2022, ISSN: 15577317. DOI:

10.1145/3460348. [Online]. Available:

http://arxiv.org/abs/2011.07986.

[6] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of

machine learning for big code and naturalness,” ACM Computing

Surveys, vol. 51, no. 4, pp. 1–36, 2018, ISSN: 15577341. DOI:

10.1145/3212695. arXiv: 1709.06182.

60

https://doi.org/10.1038/s41592-022-01490-7
https://doi.org/10.1109/BigData50022.2020.9378164
https://doi.org/10.1145/3460348
http://arxiv.org/abs/2011.07986
https://doi.org/10.1145/3212695
https://arxiv.org/abs/1709.06182

BIBLIOGRAPHY 61

[7] P. Devanbu, M. Dwyer, S. Elbaum, et al., “Deep learning software

engineering: State of research and future directions,” April 2020 Sep.

2020. [Online]. Available: http://arxiv.org/abs/2009.08525.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on

graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,

2017.

[9] C. Maddison and D. Tarlow, “Structured generative models of natural

source code,” in International Conference on Machine Learning, PMLR,

2014, pp. 649–657.

[10] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to

represent programs with graphs,” in 6th International Conference on

Learning Representations, ICLR 2018 - Conference Track Proceedings,

Nov. 2018. arXiv: 1711.00740. [Online]. Available:

http://arxiv.org/abs/1711.00740.

[11] V. Romanov, V. Ivanov, and G. Succi, “Approaches for Representing

Software as Graphs for Machine Learning Applications,” in Proceedings

- 2020 International Computer Symposium, ICS, Institute of Electrical

and Electronics Engineers Inc., Dec. 2020, pp. 529–534, ISBN:

9781728192550. DOI: 10.1109/ICS51289.2020.00109.

[12] P. Vytovtov and K. Chuvilin, “Unsupervised classifying of software

source code using graph neural networks,” vol. 2019-April, IEEE, Apr.

2019, pp. 518–524, ISBN: 978-952-68653-8-6. DOI:

10.23919/FRUCT.2019.8711909. [Online]. Available:

https://ieeexplore.ieee.org/document/8711909/.

[13] S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “A literature

review of using machine learning in software development life cycle

stages,” IEEE Access, vol. 9, pp. 140 896–140 920, 2021, ISSN: 21693536.

DOI: 10.1109/ACCESS.2021.3119746. [Online]. Available:

https://ieeexplore.ieee.org/document/9568959/.

http://arxiv.org/abs/2009.08525
https://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
https://doi.org/10.1109/ICS51289.2020.00109
https://doi.org/10.23919/FRUCT.2019.8711909
https://ieeexplore.ieee.org/document/8711909/
https://doi.org/10.1109/ACCESS.2021.3119746
https://ieeexplore.ieee.org/document/9568959/

BIBLIOGRAPHY 62

[14] O. T. Borges, J. C. Couto, D. D. A. Ruiz, and R. Prikladnicki, “How

machine learning has been applied in software engineering?,” vol. 2,

SCITEPRESS - Science and Technology Publications, 2020, pp. 306–313,

ISBN: 9789897584237. DOI: 10.5220/0009417703060313.

[Online]. Available:

http://www.scitepress.org/DigitalLibrary/Link.

aspx?doi=10.5220/0009417703060313.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A

review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 35, no. 8, pp. 1798–1828, Aug. 2013, ISSN: 01628828. DOI:

10.1109/TPAMI.2013.50. arXiv: 1206.5538. [Online]. Available:

http://ieeexplore.ieee.org/document/6472238/.

[16] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015, ISSN: 14764687. DOI:

10.1038/nature14539.

[17] F. Chen, Y. C. Wang, B. Wang, and C. C. Kuo, “Graph representation

learning: A survey,” APSIPA Trans. Signal Inf. Process., vol. 9, 2020, ISSN:

20487703. DOI: 10.1017/ATSIP.2020.13. arXiv: 1909.00958.

[18] W. L. Hamilton, Graph Representation Learning. 2020.

[19] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with

graph neural network and flow-augmented abstract syntax tree,” IEEE,

Feb. 2020, pp. 261–271, ISBN: 9781728151434. DOI:

10.1109/SANER48275.2020.9054857. [Online]. Available:

https://ieeexplore.ieee.org/document/9054857/.

[20] C. Zeng, C. Y. Zhou, S. K. Lv, P. He, and J. Huang, “Gcn2defect : Graph

convolutional networks for smotetomek-based software defect

prediction,” IEEE, Oct. 2022, pp. 69–79, ISBN: 978-1-6654-2587-2. DOI:

10.1109/issre52982.2021.00020. [Online]. Available:

https://ieeexplore.ieee.org/document/9700305/.

https://doi.org/10.5220/0009417703060313
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009417703060313
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009417703060313
https://doi.org/10.1109/TPAMI.2013.50
https://arxiv.org/abs/1206.5538
http://ieeexplore.ieee.org/document/6472238/
https://doi.org/10.1038/nature14539
https://doi.org/10.1017/ATSIP.2020.13
https://arxiv.org/abs/1909.00958
https://doi.org/10.1109/SANER48275.2020.9054857
https://ieeexplore.ieee.org/document/9054857/
https://doi.org/10.1109/issre52982.2021.00020
https://ieeexplore.ieee.org/document/9700305/

BIBLIOGRAPHY 63

[21] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective

vulnerability identification by learning comprehensive program

semantics via graph neural networks,” Advances in Neural Information

Processing Systems, vol. 32, pp. 1–11, NeurIPS Sep. 2019, ISSN: 10495258.

[Online]. Available: http://arxiv.org/abs/1909.03496.

[22] Z. Zhao, B. Yang, G. Li, H. Liu, and Z. Jin, “Precise learning of source

code contextual semantics via hierarchical dependence structure and

graph attention networks,” Journal of Systems and Software, vol. 184,

p. 111 108, Feb. 2022, ISSN: 01641212. DOI:

10.1016/j.jss.2021.111108. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/

S0164121221002053.

[23] S. Arakelyan, S. Arasteh, C. Hauser, E. Kline, and A. Galstyan, “Bin2vec:

Learning representations of binary executable programs for security

tasks,” Cybersecurity, vol. 4, p. 26, 1 Dec. 2021, ISSN: 2523-3246. DOI:

10.1186/s42400-021-00088-4. [Online]. Available:

https://cybersecurity.springeropen.com/articles/

10.1186/s42400-021-00088-4.

[24] D. Georgiev, M. Brockschmidt, and M. Allamanis, “Heat: Hyperedge

attention networks,” Jan. 2022. [Online]. Available:

http://arxiv.org/abs/2201.12113.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A

comprehensive survey on graph neural networks,” IEEE transactions

on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[26] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code

summarization via a graph neural network,” ACM, Jul. 2020,

pp. 184–195, ISBN: 9781450379588. DOI:

10.1145/3387904.3389268. [Online]. Available:

https://doi.org/10.1145/3387904.3389268%20https:

//dl.acm.org/doi/10.1145/3387904.3389268.

http://arxiv.org/abs/1909.03496
https://doi.org/10.1016/j.jss.2021.111108
https://linkinghub.elsevier.com/retrieve/pii/S0164121221002053
https://linkinghub.elsevier.com/retrieve/pii/S0164121221002053
https://doi.org/10.1186/s42400-021-00088-4
https://cybersecurity.springeropen.com/articles/10.1186/s42400-021-00088-4
https://cybersecurity.springeropen.com/articles/10.1186/s42400-021-00088-4
http://arxiv.org/abs/2201.12113
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268%20https://dl.acm.org/doi/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268%20https://dl.acm.org/doi/10.1145/3387904.3389268

BIBLIOGRAPHY 64

[27] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”

Advances in neural information processing systems, vol. 30, 2017.

[28] P. Haridas, G. Chennupati, N. Santhi, P. Romero, and S. Eidenbenz,

“Code characterization with graph convolutions and capsule

networks,” IEEE Access, vol. 8, pp. 136 307–136 315, 2020, ISSN:

21693536. DOI: 10.1109/ACCESS.2020.3011909. [Online].

Available:

https://ieeexplore.ieee.org/document/9149622/.

[29] Y. Ji, L. Cui, and H. H. Huang, “Buggraph: Differentiating source-binary

code similarity with graph triplet-loss network,” ACM, May 2021,

pp. 702–715, ISBN: 9781450382878. DOI:

10.1145/3433210.3437533. [Online]. Available:

https://doi.org/10.1145/3433210.3437533%20https:

//dl.acm.org/doi/10.1145/3433210.3437533.

[30] G. Ye, Z. Tang, H. Wang, et al., “Deep program structure modeling

through multi-relational graph-based learning,” ACM, Sep. 2020,

pp. 111–123, ISBN: 9781450380751. DOI:

10.1145/3410463.3414670. [Online]. Available:

https://doi.org/10.1145/3410463.3414670%20https:

//dl.acm.org/doi/10.1145/3410463.3414670.

[31] T. Long, Y. Xie, X. Chen, W. Zhang, Q. Cao, and Y. Yu, “Multi-view graph

representation for programming language processing: An investigation

into algorithm detection,” 1 Feb. 2022. [Online]. Available:

http://arxiv.org/abs/2202.12481.

[32] U. Alon, “Machine Learning for Programming Language Processing,”

Ph.D. dissertation, 2021.

[33] L. Liu, H. Nguyen, G. Karypis, and S. Sengamedu, “Universal

representation for code,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 12714 LNAI, pp. 16–28, Mar. 2021, ISSN: 16113349.

DOI: 10.1007/978-3-030-75768-7_2. [Online]. Available:

https://doi.org/10.1109/ACCESS.2020.3011909
https://ieeexplore.ieee.org/document/9149622/
https://doi.org/10.1145/3433210.3437533
https://doi.org/10.1145/3433210.3437533%20https://dl.acm.org/doi/10.1145/3433210.3437533
https://doi.org/10.1145/3433210.3437533%20https://dl.acm.org/doi/10.1145/3433210.3437533
https://doi.org/10.1145/3410463.3414670
https://doi.org/10.1145/3410463.3414670%20https://dl.acm.org/doi/10.1145/3410463.3414670
https://doi.org/10.1145/3410463.3414670%20https://dl.acm.org/doi/10.1145/3410463.3414670
http://arxiv.org/abs/2202.12481
https://doi.org/10.1007/978-3-030-75768-7_2

BIBLIOGRAPHY 65

http://dx.doi.org/10.1007/978-3-030-75768-

7_2%20https://link.springer.com/10.1007/978-3-

030-75768-7_2%20http://arxiv.org/abs/2103.03116.

[34] “Open vocabulary learning on source code with a graph-structured

cache,” 36th International Conference on Machine Learning, ICML

2019, vol. 2019-June, pp. 2662–2674, Oct. 2018. [Online]. Available:

http://arxiv.org/abs/1810.08305.

[35] H. Wang, G. Ye, Z. Tang, et al., “Combining graph-based learning with

automated data collection for code vulnerability detection,” IEEE

Transactions on Information Forensics and Security, vol. 16,

pp. 1943–1958, Mar. 2021, ISSN: 1556-6013. DOI:

10.1109/TIFS.2020.3044773. [Online]. Available:

https://ieeexplore.ieee.org/document/9293321/.

[36] A. V. Phan, M. L. Nguyen, and L. T. Bui, “Convolutional neural networks

over control flow graphs for software defect prediction,”

vol. 2017-Novem, IEEE, Nov. 2018, pp. 45–52, ISBN: 9781538638767.

DOI: 10.1109/ICTAI.2017.00019. [Online]. Available:

https://ieeexplore.ieee.org/document/8371922/.

[37] Z. Haojie, L. Yujun, L. Yiwei, and Z. Nanxin, “Vulmg: A static detection

solution for source code vulnerabilities based on code property graph

and graph attention network,” IEEE, Dec. 2022, pp. 250–255, ISBN:

9781665413640. DOI:

10.1109/iccwamtip53232.2021.9674145. [Online]. Available:

https://ieeexplore.ieee.org/document/9674145/.

[38] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based

representation for predicting program properties,” ACM SIGPLAN

Notices, vol. 53, no. 4, pp. 404–419, 2018, ISSN: 15232867. DOI:

10.1145/3192366.3192412. arXiv: 1803.09544.

[39] Y. Wang and H. Li, “Code completion by modeling flattened abstract

syntax trees as graphs,” Mar. 2021. [Online]. Available:

http://arxiv.org/abs/2103.09499.

http://dx.doi.org/10.1007/978-3-030-75768-7_2%20https://link.springer.com/10.1007/978-3-030-75768-7_2%20http://arxiv.org/abs/2103.03116
http://dx.doi.org/10.1007/978-3-030-75768-7_2%20https://link.springer.com/10.1007/978-3-030-75768-7_2%20http://arxiv.org/abs/2103.03116
http://dx.doi.org/10.1007/978-3-030-75768-7_2%20https://link.springer.com/10.1007/978-3-030-75768-7_2%20http://arxiv.org/abs/2103.03116
http://arxiv.org/abs/1810.08305
https://doi.org/10.1109/TIFS.2020.3044773
https://ieeexplore.ieee.org/document/9293321/
https://doi.org/10.1109/ICTAI.2017.00019
https://ieeexplore.ieee.org/document/8371922/
https://doi.org/10.1109/iccwamtip53232.2021.9674145
https://ieeexplore.ieee.org/document/9674145/
https://doi.org/10.1145/3192366.3192412
https://arxiv.org/abs/1803.09544
http://arxiv.org/abs/2103.09499

BIBLIOGRAPHY 66

[40] F. Ye, S. Zhou, A. Venkat, et al., “Misim: A neural code semantics

similarity system using the context-aware semantics structure,” Jun.

2020, Machine Inferred Code Similarity (MISIM)
1. Context-aware

semantics structure (CASS)
2. Neural code similarity scoring

algorithm. [Online]. Available:

http://arxiv.org/abs/2006.05265.

[41] M. Lu, D. Tan, N. Xiong, Z. Chen, and H. Li, “Program classification

using gated graph attention neural network for online programming

service,” vol. 14, pp. 1–12, 8 Mar. 2019. [Online]. Available:

http://arxiv.org/abs/1903.03804.

[42] M. Lu, Y. Wang, D. Tan, and L. Zhao, “Student program classification

using gated graph attention neural network,” IEEE Access, vol. 9,

pp. 87 857–87 868, 2021, ISSN: 2169-3536. DOI:

10.1109/ACCESS.2021.3063475. [Online]. Available:

https://ieeexplore.ieee.org/document/9367198/.

[43] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties

from "Big Code",” in ACM SIGPLAN Not., vol. 50, New York, NY, USA:

ACM, Jan. 2015, pp. 111–124, ISBN: 9781450333009. DOI:

10.1145/2676726.2677009. [Online]. Available:

https://dl.acm.org/doi/10.1145/3306204%20https:

//dl.acm.org/doi/10.1145/2676726.2677009.

[44] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and Y. Heights, “Learning to

map source code to software vulnerability using code-as-a-graph,”

Tech. Rep., 2020.

[45] M. A. Hearst, “Untangling text data mining,” in Proc. 37th Annu. Meet.

Assoc. Comput. Linguist. Comput. Linguist. -, Morristown, NJ, USA:

Association for Computational Linguistics, 1999, pp. 3–10. DOI:

10.3115/1034678.1034679. [Online]. Available:

www.aaai.org/%20http://portal.acm.org/citation.

cfm?doid=1034678.1034679.

http://arxiv.org/abs/2006.05265
http://arxiv.org/abs/1903.03804
https://doi.org/10.1109/ACCESS.2021.3063475
https://ieeexplore.ieee.org/document/9367198/
https://doi.org/10.1145/2676726.2677009
https://dl.acm.org/doi/10.1145/3306204%20https://dl.acm.org/doi/10.1145/2676726.2677009
https://dl.acm.org/doi/10.1145/3306204%20https://dl.acm.org/doi/10.1145/2676726.2677009
https://doi.org/10.3115/1034678.1034679
www.aaai.org/%20http://portal.acm.org/citation.cfm?doid=1034678.1034679
www.aaai.org/%20http://portal.acm.org/citation.cfm?doid=1034678.1034679

BIBLIOGRAPHY 67

[46] R. Garg and Heena, “Study of text based mining,” in Proc. Int. Conf.

Adv. Comput. Artif. Intell. ACAI 2011, New York, New York, USA: ACM

Press, 2011, pp. 5–8, ISBN: 9781450306355. DOI:

10.1145/2007052.2007054. [Online]. Available: http://

portal.acm.org/citation.cfm?doid=2007052.2007054.

[47] G. D. Mergel, M. S. Silveira, and T. S. da Silva, “A method to support

search string building in systematic literature reviews through visual

text mining,” Proc. 30th Annu. ACM Symp. Appl. Comput.,

vol. 13-17-Apri, pp. 1594–1601, Apr. 2015. DOI:

10.1145/2695664.2695902. [Online]. Available:

https://dl.acm.org/doi/10.1145/2695664.2695902.

[48] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software

engineering challenges of deep learning,” IEEE, Aug. 2018, pp. 50–59,

ISBN: 9781538673829. DOI: 10.1109/SEAA.2018.00018. [Online].

Available: https:

//ieeexplore.ieee.org/document/8498185/%20http:

//arxiv.org/abs/1810.12034%20http:

//dx.doi.org/10.1109/SEAA.2018.00018.

[49] S. K. Lo, Q. Lu, C. Wang, H. Y. Paik, and L. Zhu, “A systematic literature

review on federated machine learning: From a sofware engineering

perspective,” ACM Computing Surveys, vol. 54, pp. 1–39, 5 Jun. 2021,

ISSN: 15577341. DOI: 10.1145/3450288. [Online]. Available:

https://dl.acm.org/doi/10.1145/3450288.

[50] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review

of machine learning based software development effort estimation

models,” Information and Software Technology, vol. 54, pp. 41–59, 1

Jan. 2012, ISSN: 09505849. DOI:

10.1016/j.infsof.2011.09.002. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/

S0950584911001832.

[51] K. Meinke and A. Bennaceur, “Machine learning for software

engineering: Models, methods, and applications,” ACM, May 2018,

https://doi.org/10.1145/2007052.2007054
http://portal.acm.org/citation.cfm?doid=2007052.2007054
http://portal.acm.org/citation.cfm?doid=2007052.2007054
https://doi.org/10.1145/2695664.2695902
https://dl.acm.org/doi/10.1145/2695664.2695902
https://doi.org/10.1109/SEAA.2018.00018
https://ieeexplore.ieee.org/document/8498185/%20http://arxiv.org/abs/1810.12034%20http://dx.doi.org/10.1109/SEAA.2018.00018
https://ieeexplore.ieee.org/document/8498185/%20http://arxiv.org/abs/1810.12034%20http://dx.doi.org/10.1109/SEAA.2018.00018
https://ieeexplore.ieee.org/document/8498185/%20http://arxiv.org/abs/1810.12034%20http://dx.doi.org/10.1109/SEAA.2018.00018
https://ieeexplore.ieee.org/document/8498185/%20http://arxiv.org/abs/1810.12034%20http://dx.doi.org/10.1109/SEAA.2018.00018
https://doi.org/10.1145/3450288
https://dl.acm.org/doi/10.1145/3450288
https://doi.org/10.1016/j.infsof.2011.09.002
https://linkinghub.elsevier.com/retrieve/pii/S0950584911001832
https://linkinghub.elsevier.com/retrieve/pii/S0950584911001832

BIBLIOGRAPHY 68

pp. 548–549, ISBN: 9781450356633. DOI:

10.1145/3183440.3183461. [Online]. Available:

https://dl.acm.org/doi/10.1145/3183440.3183461.

[52] M. Fan, A. Jia, J. Liu, T. Liu, and W. Chen, “When representation

learning meets software analysis,” RL+SE and PL 2020 - Proceedings of

the 1st ACM SIGSOFT International Workshop on Representation

Learning for Software Engineering and Program Languages, Co-located

with ESEC/FSE 2020, pp. 17–18, 2020. DOI:

10.1145/3416506.3423578.

[53] T. Lin, F. Chen, and X. Fu, “Methodological principles for deep learning

in software engineering,” vol. 2021-Octob, IEEE, Oct. 2021, pp. 1–3,

ISBN: 9781665443319. DOI:

10.1109/IPCCC51483.2021.9679405. [Online]. Available:

https://ieeexplore.ieee.org/document/9679405/.

[54] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning

change software development practices?” IEEE Transactions on

Software Engineering, vol. 47, pp. 1857–1871, 9 Sep. 2021, ISSN:

19393520. DOI: 10.1109/TSE.2019.2937083. [Online]. Available:

https://ieeexplore.ieee.org/document/8812912/.

[55] X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning in software

engineering,” pp. 1–10, May 2018. [Online]. Available:

http://arxiv.org/abs/1805.04825.

[56] V. Pranathi, G. R. Reddy, K. S. Kumar, G. Jhansi, and B. Rajitha,

“Analysis of deep learning in software engineering,” vol. 020042, 2022,

p. 020 042, ISBN: 9780735443686. DOI: 10.1063/5.0083699.

[Online]. Available: http:

//aip.scitation.org/doi/abs/10.1063/5.0083699.

[57] F. Ferreira, L. L. Silva, and M. T. Valente, “Software engineering meets

deep learning: A mapping study,” ACM, Mar. 2021, pp. 1542–1549,

ISBN: 9781450381048. DOI: 10.1145/3412841.3442029. [Online].

https://doi.org/10.1145/3183440.3183461
https://dl.acm.org/doi/10.1145/3183440.3183461
https://doi.org/10.1145/3416506.3423578
https://doi.org/10.1109/IPCCC51483.2021.9679405
https://ieeexplore.ieee.org/document/9679405/
https://doi.org/10.1109/TSE.2019.2937083
https://ieeexplore.ieee.org/document/8812912/
http://arxiv.org/abs/1805.04825
https://doi.org/10.1063/5.0083699
http://aip.scitation.org/doi/abs/10.1063/5.0083699
http://aip.scitation.org/doi/abs/10.1063/5.0083699
https://doi.org/10.1145/3412841.3442029

BIBLIOGRAPHY 69

Available:

https://dl.acm.org/doi/10.1145/3412841.3442029.

[58] I. C. Society, Guide to the Software Engineering Body of Knowledge

Version 3.0 (SWEBOK Guide V3.0), ISBN: 9780769551661.

[59] P. Muenchaisri, “Literature reviews on applying artificial

intelligence/machine learning to software engineering research

problems: Preliminary,” CEUR Workshop Proceedings, vol. 2506,

pp. 30–35, Seed 2019, ISSN: 16130073.

[60] S. K. Pani and A. K. Mishra, “Machine learning applications in software

engineering: Recent advances and future research directions,”

International Journal of Engineering Research and Technology (IJERT),

vol. 8, pp. 1–4, 1 2020. [Online]. Available: www.ijert.org.

[61] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the

replicability and reproducibility of deep learning in software

engineering,” ACM Transactions on Software Engineering and

Methodology, vol. 31, pp. 1–46, 1 Jan. 2020, ISSN: 1049-331X. DOI:

10.1145/3477535. [Online]. Available:

http://arxiv.org/abs/2006.14244%0Ahttp:

//dx.doi.org/10.1145/3477535.

[62] C. Niu, C. Li, B. Luo, and V. Ng, “Deep learning meets software

engineering: A survey on pre-trained models of source code,” May

2022. [Online]. Available: http://arxiv.org/abs/2205.11739.

[63] A. F. D. Carpio and L. B. Angarita, “Trends in software engineering

processes using deep learning: A systematic literature review,”

Proceedings - 46th Euromicro Conference on Software Engineering and

Advanced Applications, SEAA 2020, pp. 445–454, 2020. DOI:

10.1109/SEAA51224.2020.00077.

[64] F. Kumeno, “Sofware engneering challenges for machine learning

applications: A literature review,” Intelligent Decision Technologies,

vol. 13, pp. 463–476, 4 Feb. 2020, ISSN: 18724981. DOI:

10.3233/idt-190160. [Online]. Available:

https://dl.acm.org/doi/10.1145/3412841.3442029
www.ijert.org
https://doi.org/10.1145/3477535
http://arxiv.org/abs/2006.14244%0Ahttp://dx.doi.org/10.1145/3477535
http://arxiv.org/abs/2006.14244%0Ahttp://dx.doi.org/10.1145/3477535
http://arxiv.org/abs/2205.11739
https://doi.org/10.1109/SEAA51224.2020.00077
https://doi.org/10.3233/idt-190160

BIBLIOGRAPHY 70

https://www.medra.org/servlet/aliasResolver?

alias=iospress&doi=10.3233/IDT-190160.

[65] Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for

software engineering,” ACM Computing Surveys, vol. 1, p. 3 505 243,

Dec. 2021, ISSN: 0360-0300. DOI: 10.1145/3505243. [Online].

Available: https://dl.acm.org/doi/10.1145/3505243.

[66] C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshyvanyk, “A

systematic literature review on the use of deep learning in software

engineering research,” ACM Transactions on Software Engineering and

Methodology, vol. 31, pp. 1–58, 2 Apr. 2022, ISSN: 1049-331X. DOI:

10.1145/3485275. [Online]. Available:

http://arxiv.org/abs/2009.06520%20https:

//dl.acm.org/doi/10.1145/3485275.

[67] S. Wang, L. Huang, A. Gao, et al., “Machine/deep learning for software

engineering: A systematic literature review,” IEEE Transactions on

Software Engineering, vol. 5589, pp. 1–1, c 2022, ISSN: 0098-5589. DOI:

10.1109/TSE.2022.3173346. [Online]. Available:

https://ieeexplore.ieee.org/document/9772253/.

[68] S. Vashishth, N. Yadati, and P. Talukdar, “Graph-based deep learning in

natural language processing,” ACM, Jan. 2020, pp. 371–372, ISBN:

9781450377386. DOI: 10.1145/3371158.3371232. [Online].

Available:

https://dl.acm.org/doi/10.1145/3371158.3371232.

[69] L. Wu, Y. Chen, H. Ji, and B. Liu, “Deep learning on graphs for natural

language processing,” ACM, Aug. 2021, pp. 4084–4085, ISBN:

9781450383325. DOI: 10.1145/3447548.3470820. [Online].

Available:

https://dl.acm.org/doi/10.1145/3447548.3470820.

[70] H. C. Yi, Z. H. You, D. S. Huang, and C. K. Kwoh, “Graph representation

learning in bioinformatics: Trends, methods and applications,” Brief.

https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDT-190160
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDT-190160
https://doi.org/10.1145/3505243
https://dl.acm.org/doi/10.1145/3505243
https://doi.org/10.1145/3485275
http://arxiv.org/abs/2009.06520%20https://dl.acm.org/doi/10.1145/3485275
http://arxiv.org/abs/2009.06520%20https://dl.acm.org/doi/10.1145/3485275
https://doi.org/10.1109/TSE.2022.3173346
https://ieeexplore.ieee.org/document/9772253/
https://doi.org/10.1145/3371158.3371232
https://dl.acm.org/doi/10.1145/3371158.3371232
https://doi.org/10.1145/3447548.3470820
https://dl.acm.org/doi/10.1145/3447548.3470820

BIBLIOGRAPHY 71

Bioinform., vol. 23, no. 1, pp. 1–16, 2022, ISSN: 14774054. DOI:

10.1093/bib/bbab340.

[71] B. A. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based

software engineering,” vol. 26, IEEE Comput. Soc, 2004, pp. 273–281,

ISBN: 0-7695-2163-0. DOI: 10.1109/icse.2004.1317449.

[Online]. Available:

http://ieeexplore.ieee.org/document/1317449/.

[72] B. Kitchenham and S. Charters, “Guidelines for performing systematic

literature reviews in software engineering,” Technical report, Ver. 2.3

EBSE Technical Report. EBSE, vol. 1, pp. 1–54, 2007.

[73] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,

“Lessons from applying the systematic literature review process within

the software engineering domain,” Journal of Systems and Software,

vol. 80, pp. 571–583, 4 2007, ISSN: 01641212. DOI:

10.1016/j.jss.2006.07.009. [Online]. Available:

http://dx.doi.org/10.1016/j.jss.2006.07.009.

[74] Y. Xiao and M. Watson, “Guidance on conducting a systematic

literature review,” Journal of Planning Education and Research, vol. 39,

pp. 93–112, 1 2019, ISSN: 0739456X. DOI:

10.1177/0739456X17723971.

[75] M. Gusenbauer and N. R. Haddaway, “What every researcher should

know about searching – clarified concepts, search advice, and an

agenda to improve finding in academia,” Res. Synth. Methods, vol. 12,

no. 2, pp. 136–147, 2021, ISSN: 17592887. DOI: 10.1002/jrsm.1457.

[76] M. Gusenbauer and N. R. Haddaway, “Which academic search systems

are suitable for systematic reviews or meta-analyses? Evaluating

retrieval qualities of Google Scholar, PubMed, and 26 other resources,”

Res. Synth. Methods, vol. 11, no. 2, pp. 181–217, 2020, ISSN: 17592887.

DOI: 10.1002/jrsm.1378.

https://doi.org/10.1093/bib/bbab340
https://doi.org/10.1109/icse.2004.1317449
http://ieeexplore.ieee.org/document/1317449/
https://doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1177/0739456X17723971
https://doi.org/10.1002/jrsm.1457
https://doi.org/10.1002/jrsm.1378

BIBLIOGRAPHY 72

[77] “A systematic approach to searching: An efficient and complete

method to develop literature searches,” Journal of the Medical Library

Association, vol. 106, pp. 531–541, 4 2018, ISSN: 15589439. DOI:

10.5195/jmla.2018.283.

[78] S. Marcos-Pablos and F. J. García-Peñalvo, “Decision support tools for

SLR search string construction,” in ACM Int. Conf. Proceeding Ser., New

York, NY, USA: ACM, Oct. 2018, pp. 660–667, ISBN: 9781450365185. DOI:

10.1145/3284179.3284292. [Online]. Available:

https://dl.acm.org/doi/10.1145/3284179.3284292.

[79] B. Kitchenham, R. Pretorius, D. Budgen, et al., “Systematic literature

reviews in software engineering-a tertiary study,” Information and

Software Technology, vol. 52, pp. 792–805, 8 2010, ISSN: 09505849. DOI:

10.1016/j.infsof.2010.03.006. [Online]. Available:

http://dx.doi.org/10.1016/j.infsof.2010.03.006.

[80] B. Karakan, “Tool support for systematic literature reviews: Analyzing

existing solutions and the potential for automation,” 2021. [Online].

Available:

http://elib.uni-stuttgart.de/handle/11682/11459.

[81] A. Hinderks, F. Jose, D. Mayo, J. Thomaschewski, and M. J. Escalona,

“An slr-tool: Search process in practice : To conduct and manage

systematic literature review (slr),” Proceedings - 2020 ACM/IEEE 42nd

International Conference on Software Engineering: Companion,

ICSE-Companion 2020, pp. 81–84, 2020, ISSN: 02705257. DOI:

10.1145/3377812.3382137.

[82] G. Wang, Q. Peng, Y. Zhang, and M. Zhang, “What Have We Learned

from OpenReview?” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12858 LNCS,

pp. 63–79, 2021, ISSN: 16113349. DOI:

10.1007/978-3-030-85896-4_6. arXiv: 2103.05885.

[83] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,

“ProGraML: Graph-based Deep Learning for Program Optimization

https://doi.org/10.5195/jmla.2018.283
https://doi.org/10.1145/3284179.3284292
https://dl.acm.org/doi/10.1145/3284179.3284292
https://doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://elib.uni-stuttgart.de/handle/11682/11459
https://doi.org/10.1145/3377812.3382137
https://doi.org/10.1007/978-3-030-85896-4_6
https://arxiv.org/abs/2103.05885

BIBLIOGRAPHY 73

and Analysis,” Mar. 2020. arXiv: 2003.10536. [Online]. Available:

http://arxiv.org/abs/2003.10536.

[84] J. Cheng, I. Fostiropoulos, and B. Boehm, “Gn-transformer: Fusing

sequence and graph representation for improved code

summarization,” vol. 1, 1 Nov. 2021. [Online]. Available:

http://arxiv.org/abs/2111.08874.

[85] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,

“Modeling functional similarity in source code with graph-based

siamese networks,” IEEE Transactions on Software Engineering, pp. 1–1,

2021, ISSN: 0098-5589. DOI: 10.1109/TSE.2021.3105556.

[Online]. Available:

https://ieeexplore.ieee.org/document/9516896/.

[86] J. Cheng, I. Fostiropoulos, and B. Boehm, “Graph conditioned

sparse-attention for improved source code understanding,” Dec. 2021.

[Online]. Available: http://arxiv.org/abs/2112.00663.

[87] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically

detecting software vulnerabilities using deep graph neural network,”

ACM Transactions on Software Engineering and Methodology, vol. 30,

pp. 1–33, 3 May 2021, ISSN: 15577392. DOI: 10.1145/3436877.

[Online]. Available:

https://dl.acm.org/doi/10.1145/3436877.

[88] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and

discovering vulnerabilities with code property graphs,” Proceedings -

IEEE Symposium on Security and Privacy, pp. 590–604, 2014, ISSN:

10816011. DOI: 10.1109/SP.2014.44.

[89] Y. Wu, J. Lu, Y. Zhang, and S. Jin, “Vulnerability detection in c/c++

source code with graph representation learning,” IEEE, Jan. 2021,

pp. 1519–1524, ISBN: 978-1-6654-1490-6. DOI:

10.1109/CCWC51732.2021.9376145. [Online]. Available:

https://ieeexplore.ieee.org/document/9376145/.

https://arxiv.org/abs/2003.10536
http://arxiv.org/abs/2003.10536
http://arxiv.org/abs/2111.08874
https://doi.org/10.1109/TSE.2021.3105556
https://ieeexplore.ieee.org/document/9516896/
http://arxiv.org/abs/2112.00663
https://doi.org/10.1145/3436877
https://dl.acm.org/doi/10.1145/3436877
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/CCWC51732.2021.9376145
https://ieeexplore.ieee.org/document/9376145/

BIBLIOGRAPHY 74

[90] J. Xu, J. Ai, and T. Shi, “Software defect prediction for specific defect

types based on augmented code graph representation,” IEEE, Aug.

2021, pp. 669–678, ISBN: 978-1-6654-4391-3. DOI:

10.1109/DSA52907.2021.00097. [Online]. Available:

https://ieeexplore.ieee.org/document/9622967/.

[91] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “Lambdanet: Probabilistic

type inference using graph neural networks,” pp. 1–11, Apr. 2020, Type

dependency graph –gt; GNN and pointer-network –gt; predict

user-defined types. [Online]. Available:

http://arxiv.org/abs/2005.02161.

[92] Y. Zhuang, S. Suneja, V. Thost, G. Domeniconi, A. Morari, and J. Laredo,

“Software vulnerability detection via deep learning over disaggregated

code graph representation,” Sep. 2021. [Online]. Available:

http://arxiv.org/abs/2109.03341.

[93] X. Li, C. J. Maddison, and D. Tarlow, “Learning to extend program

graphs to work-in-progress code,” May 2021. [Online]. Available:

http://arxiv.org/abs/2105.14038.

[94] W. Leeson and M. B. Dwyer, “Algorithm selection for software

verification using graph attention networks,” vol. 1, 1 Jan. 2022.

[Online]. Available: http://arxiv.org/abs/2201.11711.

[95] Y. Wang, E. Shi, L. Du, et al., “Cocosum: Contextual code

summarization with multi-relational graph neural network,” Journal of

the ACM, vol. 1, 1 Jul. 2021. [Online]. Available:

http://arxiv.org/abs/2107.01933.

[96] M. Brockschmidt, M. Allamanis, and A. Gaunt, “G c m g,” Iclr, pp. 1–24,

2019.

[97] L. Sikic, A. S. Kurdija, K. Vladimir, and M. Silic, “Graph neural network

for source code defect prediction,” IEEE Access, vol. 10,

pp. 10 402–10 415, Mar. 2022, ISSN: 21693536. DOI:

10.1109/ACCESS.2022.3144598.

https://doi.org/10.1109/DSA52907.2021.00097
https://ieeexplore.ieee.org/document/9622967/
http://arxiv.org/abs/2005.02161
http://arxiv.org/abs/2109.03341
http://arxiv.org/abs/2105.14038
http://arxiv.org/abs/2201.11711
http://arxiv.org/abs/2107.01933
https://doi.org/10.1109/ACCESS.2022.3144598

BIBLIOGRAPHY 75

[98] G. Tech and K. Wang, “Hoppity : Learning graph transformations detect

and fix bugs in programs,” Iclr 2020, pp. 1–17, 2020.

[99] D. Tarlow, S. Moitra, A. Rice, et al., “Learning to fix build errors with

graph2diff neural networks,” ACM, Jun. 2020, pp. 19–20, ISBN:

9781450379632. DOI: 10.1145/3387940.3392181. [Online].

Available:

https://dl.acm.org/doi/10.1145/3387940.3392181.

[100] W. Wang, K. Zhang, G. Li, and Z. Jin, “Learning to Represent Programs

with Heterogeneous Graphs,” pp. 1–10, 2020. arXiv: 2012.04188.

[Online]. Available: http://arxiv.org/abs/2012.04188.

[101] M. R. I. Rabin, N. D. Bui, K. Wang, Y. Yu, L. Jiang, and M. A. Alipour, “On

the generalizability of neural program models with respect to

semantic-preserving program transformations,” Information and

Software Technology, vol. 135, p. 106 552, Jul. 2021, ISSN: 09505849. DOI:

10.1016/j.infsof.2021.106552. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/

S0950584921000379.

[102] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-supervised

bug detection and repair,” NeurIPS May 2021. [Online]. Available:

http://arxiv.org/abs/2105.12787.

[103] J. M. Tomczak, R. Lepert, and A. Wiggers, “Simulating execution time of

tensor programs using graph neural networks,” pp. 1–8, Apr. 2019,

Dataset for learning runtime of tensor program configuration as

graphs: 1. NN with mean as aggregation function 2. GNN to propagate

info among nodes before aggregation 3. NN representing whole AST.

[Online]. Available: http://arxiv.org/abs/1904.11876.

[104] X. Zhang, S. Yang, L. Duan, Z. Lang, Z. Shi, and L. Sun, “Transformer-xl

with graph neural network for source code summarization,” IEEE, Oct.

2021, pp. 3436–3441, ISBN: 9781665442077. DOI:

10.1109/SMC52423.2021.9658619. [Online]. Available:

https://ieeexplore.ieee.org/document/9658619/.

https://doi.org/10.1145/3387940.3392181
https://dl.acm.org/doi/10.1145/3387940.3392181
https://arxiv.org/abs/2012.04188
http://arxiv.org/abs/2012.04188
https://doi.org/10.1016/j.infsof.2021.106552
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000379
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000379
http://arxiv.org/abs/2105.12787
http://arxiv.org/abs/1904.11876
https://doi.org/10.1109/SMC52423.2021.9658619
https://ieeexplore.ieee.org/document/9658619/

BIBLIOGRAPHY 76

[105] B. Wu, B. Liang, and X. Zhang, “Turn tree into graph: Automatic code

review via simplified ast driven graph convolutional network,” Feb.

2022. [Online]. Available: http://arxiv.org/abs/2202.07946.

[106] M. Li, J. Pei, J. He, et al., “Using ggnn to recommend log statement

level,” pp. 1–10, Dec. 2019. [Online]. Available:

http://arxiv.org/abs/1912.05097.

[107] Y. Guo, P. Li, Y. Luo, X. Wang, and Z. Wang, “Graphspy: Fused program

semantic embedding through graph neural networks for memory

efficiency,” vol. 2021-Decem, IEEE, Dec. 2021, pp. 1045–1050, ISBN:

978-1-6654-3274-0. DOI: 10.1109/DAC18074.2021.9586120.

[Online]. Available:

https://ieeexplore.ieee.org/document/9586120/.

[108] A. Faustino, “Graphs based on ir as representation of code,” ACM, Sep.

2021, pp. 75–82, ISBN: 9781450390620. DOI:

10.1145/3475061.3475063. [Online]. Available:

https://doi.org/10.1145/3475061.3475063%20https:

//dl.acm.org/doi/10.1145/3475061.3475063.

[109] A. Nair, A. Roy, and K. Meinke, “FuncGNN: A graph neural network

approach to program similarity,” International Symposium on

Empirical Software Engineering and Measurement, 2020, ISSN:

19493789. DOI: 10.1145/3382494.3410675. arXiv: 2007.13239.

[110] Z. Shi, K. Swersky, D. Tarlow, P. Ranganathan, and M. Hashemi,

“Learning execution through neural code fusion,” pp. 1–13, Jun. 2019.

[Online]. Available: http://arxiv.org/abs/1906.07181.

[111] Y. Wang, K. Wang, F. Gao, and L. Wang, “Learning semantic program

embeddings with graph interval neural network,” Proceedings of the

ACM on Programming Languages, vol. 4, pp. 1–27, OOPSLA Nov. 2020,

ISSN: 24751421. DOI: 10.1145/3428205. [Online]. Available:

https://dl.acm.org/doi/10.1145/3428205.

http://arxiv.org/abs/2202.07946
http://arxiv.org/abs/1912.05097
https://doi.org/10.1109/DAC18074.2021.9586120
https://ieeexplore.ieee.org/document/9586120/
https://doi.org/10.1145/3475061.3475063
https://doi.org/10.1145/3475061.3475063%20https://dl.acm.org/doi/10.1145/3475061.3475063
https://doi.org/10.1145/3475061.3475063%20https://dl.acm.org/doi/10.1145/3475061.3475063
https://doi.org/10.1145/3382494.3410675
https://arxiv.org/abs/2007.13239
http://arxiv.org/abs/1906.07181
https://doi.org/10.1145/3428205
https://dl.acm.org/doi/10.1145/3428205

BIBLIOGRAPHY 77

[112] G. Ma, Y. Xiao, M. Capota, et al., “Learning code representations using

multifractal-based graph networks,” IEEE, Dec. 2021, pp. 1858–1866,

ISBN: 978-1-6654-3902-2. DOI:

10.1109/BigData52589.2021.9671685. [Online]. Available:

https://ieeexplore.ieee.org/document/9671685/.

[113] C. Zeng, Y. Yu, S. Li, et al., “Degraphcs: Embedding variable-based flow

graph for neural code search,” Mar. 2021. [Online]. Available:

http://arxiv.org/abs/2103.13020.

[114] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect

prediction techniques,” International Journal of Applied Science and

Engineering, vol. 17, pp. 331–344, 4 Dec. 2020, ISSN: 1727-7841. DOI:

10.6703/IJASE.202012_17(4).331. [Online]. Available:

https://doi.org/10.6703/IJASE.202012_17(4).331.

[115] L. Wu, F. Li, Y. Wu, and T. Zheng, “Ggf: A graph-based method for

programming language syntax error correction,” ACM, Jul. 2020,

pp. 139–148, ISBN: 9781450379588. DOI:

10.1145/3387904.3389252. [Online]. Available:

https://doi.org/10.1145/3387904.3389252.

[116] R. G. Iyer, Y. Sun, W. Wang, and J. Gottschlich, “Software language

comprehension using a program-derived semantics graph,” VL Apr.

2020. [Online]. Available: http://arxiv.org/abs/2004.00768.

[117] G. E. D. P. Rodrigues, A. M. Braga, and R. Dahab, “Using graph

embeddings and machine learning to detect cryptography misuse in

source code,” IEEE, Dec. 2020, pp. 1059–1066, ISBN: 9781728184708.

DOI: 10.1109/ICMLA51294.2020.00171. [Online]. Available:

https://ieeexplore.ieee.org/document/9356194/.

[118] S. Kurimoto, Y. Hayase, H. Yonai, H. Ito, and H. Kitagawa, “Class name

recommendation based on graph embedding of program elements,”

vol. 2019-Decem, IEEE, Dec. 2019, pp. 498–505, ISBN:

978-1-7281-4648-5. DOI: 10.1109/APSEC48747.2019.00073.

https://doi.org/10.1109/BigData52589.2021.9671685
https://ieeexplore.ieee.org/document/9671685/
http://arxiv.org/abs/2103.13020
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.1145/3387904.3389252
https://doi.org/10.1145/3387904.3389252
http://arxiv.org/abs/2004.00768
https://doi.org/10.1109/ICMLA51294.2020.00171
https://ieeexplore.ieee.org/document/9356194/
https://doi.org/10.1109/APSEC48747.2019.00073

BIBLIOGRAPHY 78

[Online]. Available:

https://ieeexplore.ieee.org/document/8946106/.

[119] W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu, “Cpgva: Code

property graph based vulnerability analysis by deep learning,” Aug.

2018, pp. 184–188. DOI: 10.1109/ICAIT.2018.8686548.

[120] M. Singh and G. S. Walia, “Using semantic analysis and graph mining

approaches to support software fault fixation,” IEEE, Oct. 2020,

pp. 43–48, ISBN: 9781728198705. DOI:

10.1109/ISSREW51248.2020.00035. [Online]. Available:

https://ieeexplore.ieee.org/document/9307741/.

[121] J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics and context

features of codes based on graph representation learning,” IEEE

Transactions on Reliability, vol. 70, pp. 613–625, 2 Jun. 2021, ISSN:

0018-9529. DOI: 10.1109/TR.2020.3040191. [Online]. Available:

https://ieeexplore.ieee.org/document/9290043/.

[122] X. Ling, L. Wu, S. Wang, et al., “Deep graph matching and searching for

semantic code retrieval,” ACM Transactions on Knowledge Discovery

from Data, vol. 15, pp. 1–21, 5 Oct. 2021, ISSN: 1556-4681. DOI:

10.1145/3447571. [Online]. Available:

https://doi.org/10.1145/3447571.

[123] H. Cheers and Y. Lin, “A novel graph-based program representation for

java code plagiarism detection,” ACM, Jan. 2020, pp. 115–122, ISBN:

9781450376907. DOI: 10.1145/3378936.3378960. [Online].

Available:

https://doi.org/10.1145/3378936.3378960%20https:

//dl.acm.org/doi/10.1145/3378936.3378960.

[124] K. Sendjaja, S. A. Rukmono, and R. S. Perdana, “Evaluating control-flow

graph similarity for grading programming exercises,” IEEE, Nov. 2021,

pp. 1–6, ISBN: 978-1-6654-9453-3. DOI:

10.1109/ICoDSE53690.2021.9648464. [Online]. Available:

https://ieeexplore.ieee.org/document/9648464/.

https://ieeexplore.ieee.org/document/8946106/
https://doi.org/10.1109/ICAIT.2018.8686548
https://doi.org/10.1109/ISSREW51248.2020.00035
https://ieeexplore.ieee.org/document/9307741/
https://doi.org/10.1109/TR.2020.3040191
https://ieeexplore.ieee.org/document/9290043/
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3447571
https://doi.org/10.1145/3378936.3378960
https://doi.org/10.1145/3378936.3378960%20https://dl.acm.org/doi/10.1145/3378936.3378960
https://doi.org/10.1145/3378936.3378960%20https://dl.acm.org/doi/10.1145/3378936.3378960
https://doi.org/10.1109/ICoDSE53690.2021.9648464
https://ieeexplore.ieee.org/document/9648464/

BIBLIOGRAPHY 79

[125] A. Desku, B. Raufi, A. Luma, and B. Selimi, “Cosine similarity through

control flow graphs for secure software engineering,” IEEE, Oct. 2021,

pp. 1–4, ISBN: 978-1-6654-2714-2. DOI:

10.1109/ICEET53442.2021.9659648. [Online]. Available:

https://ieeexplore.ieee.org/document/9659648/.

[126] M. Nadim, D. Mondal, and C. K. Roy, “Leveraging structural properties

of source code graphs for just-in-time bug prediction,” 2022, ISSN:

15737535. DOI: 10.1007/s10515-022-00326-0. [Online].

Available: http://arxiv.org/abs/2201.10137.

[127] A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic

fault detection for deep learning programs using graph

transformations,” ACM Transactions on Software Engineering and

Methodology, vol. 31, pp. 1–27, 1 May 2022, ISSN: 1049-331X. DOI:

10.1145/3470006. [Online]. Available:

https://dl.acm.org/doi/10.1145/3470006.

[128] F. Provost and T. Fawcett, Data Science for Business: What you need to

know about data mining and data-analytic thinking. " O’Reilly Media,

Inc.", 2013.

[129] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the

quality of machine learning explanations: A survey on methods and

metrics,” Electronics, vol. 10, no. 5, p. 593, 2021.

[130] N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of

code,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, 2020, ISSN:

24751421. DOI: 10.1145/3428230. arXiv: 1910.07517.

https://doi.org/10.1109/ICEET53442.2021.9659648
https://ieeexplore.ieee.org/document/9659648/
https://doi.org/10.1007/s10515-022-00326-0
http://arxiv.org/abs/2201.10137
https://doi.org/10.1145/3470006
https://dl.acm.org/doi/10.1145/3470006
https://doi.org/10.1145/3428230
https://arxiv.org/abs/1910.07517

	Introduction
	Motivation
	Problem Description
	Aim of the Thesis
	Research Questions
	Contributions
	Structure of the thesis

	Background and Fundamentals
	Representation Learning (RL)
	Deep Learning (DL)
	Graph Representation
	Geometric Deep Learning (GDL)
	Embedding Techniques
	Graph Representation Learning (GRL)
	Graph Neural Networks
	Attention Mechanism
	Transformer
	Long-range dependency problem and solutions
	Programming Language Processing (PLP)

	Code representations
	Representation Types
	GRL for SE Framework

	Text Mining

	Related work
	Deep Learning and Software Engineering
	Deep Learning on Graphs & Software Engineering

	Methodology
	Systematic Literature Review
	Planning
	Conducting
	Reporting

	Analysis and Results
	Systematic Literature Review
	Publication trends
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Discussion
	Combined Taxonomy of GRL4SE field
	Evaluation: Graph-based and traditional approaches
	Adversarial attacks
	Challenges and implications

	Conclusion
	Conclusion
	Threats to validity
	Summary
	Future work

	Appendix
	ACM Search Query String
	IEEE Xplore Search Query String
	ArXiv Search Query String
	Software Tools
	Selected Research Studies for SLR
	Journals and conferences names of studies

